Waste management in sub-Saharan Africa is one of the most critical environmental challenges of the century: it is crucial to guaranteeing public health, environmental protection and socio-economic progress. In the region the majority of waste is landfilled without any control. Waste valorization technologies, such as recycling or energy recovery, present viable solutions for converting waste into economic value and mitigating environmental impacts. One way forward is through the capture and utilisation of landfill gas, generated via anaerobic digestion and mainly composed of CH4. Systems for LFG capture and use consist of wells extracting biogas, which is then purified and used for electricity generation. This type of system are effective in reducing atmospheric emissions: by burning the CH4, it is converted into CO2, which is 28 times less potent as a greenhouse gas. If tracked, the reduced emissions can be certified so as to obtain carbon credits that can be traded on the voluntary market (VCM). This also supports the economic sustainability aspects, a sore point of this type of plant. The objective of this thesis was to build an integrated model to calculate the carbon credits that can be produced and their generative cost (CC). To do this, economic modelling was combined with the UNFCCC's ACM001 methodology, which is used to calculate emission reductions (ER) in LFG projects. Energy modelling aspects were fundamental to the design of the electricity generation system and a clear understanding of the context allowed to set the proper technological choices. Key findings indicate that technological choices minimally impact performance, with emission reductions mainly influenced by landfill size and methane fractions in LFG. The generative costs of credits is highly sensitive to electricity prices, while even in this case technological choices have a modest impact. Therefore, site selection is crucial to maximize emissions reductions and maintain competitive costs. A decision tree has been developed, based on results obtained, to guide pre-feasibility studies. Such projects can drive waste management improvements, pushing international cooperation and technology transfer. Private sector involvement, supported by economic instruments like VCM, is essential for sustainable waste management in sub-Saharan Africa.
La gestione dei rifiuti nell'Africa sub-sahariana è una delle sfide più critiche del secolo: è fondamentale per garantire la salute pubblica, la protezione ambientale e il progresso socio-economico. Nella regione la maggior parte dei rifiuti viene abbandonata in discarica senza alcun controllo. Le tecnologie di valorizzazione dei rifiuti, come il recupero energetico, presentano soluzioni praticabili per convertire i rifiuti in valore e mitigare gli impatti ambientali. Una solida opzione è la cattura e l'utilizzo del gas di discarica (LFG), generato per digestione anaerobica e composto principalmente da CH4. I sistemi per la cattura e l'utilizzo del LFG consistono in un sistema di condotte che estraggono il biogas, il quale viene utilizzato per produrre elettricità. Questo sistemi risultano molto efficaci per abbattere le emissioni: bruciando il CH4, questo viene convertito in CO2, che è 28 volte meno potente come gas serra. Se tracciate, le emissioni ridotte possono essere certificate in modo da ottenere crediti di carbonio che possono essere scambiati sul mercato volontario (VCM). Questo supporta anche gli aspetti di sostenibilità economica, punto dolente di questo tipo di impianti. L'obiettivo della tesi è stato quello di costruire un modello integrato per calcolare i crediti di carbonio producibili e il loro costo generativo. A tal fine, una modellazione economica è stata combinata con la metodologia ACM001 dell'UNFCCC, utilizzata per calcolare le riduzioni delle emissioni nei progetti LFG. Inoltre una attenta analisi del contesto ha permesso di impostare le scelte tecnologiche adeguate. I risultati principali indicano che le scelte tecnologiche hanno un impatto minimo sulle prestazioni, con riduzioni delle emissioni influenzate principalmente dalle dimensioni della discarica e dalle frazioni di metano nel LFG. Il costo generativo dei crediti è altamente sensibile ai prezzi dell'elettricità, anche in questo caso le scelte tecnologiche hanno un impatto modesto. La selezione del sito risulta quindi fondamentale per massimizzare le riduzioni delle emissioni e mantenere costi competitivi. Questi progetti possono favorire il miglioramento della gestione dei rifiuti, promuovendo la cooperazione internazionale e il trasferimento di tecnologie. Il coinvolgimento del settore privato, sostenuto da strumenti economici come il VCM, è essenziale per una gestione sostenibile dei rifiuti nela regione.
Designing a comprehensive model for carbon credit projects analysis: a case study on landfill gas in Sub-Saharan Africa
VALESE, ANDREA
2023/2024
Abstract
Waste management in sub-Saharan Africa is one of the most critical environmental challenges of the century: it is crucial to guaranteeing public health, environmental protection and socio-economic progress. In the region the majority of waste is landfilled without any control. Waste valorization technologies, such as recycling or energy recovery, present viable solutions for converting waste into economic value and mitigating environmental impacts. One way forward is through the capture and utilisation of landfill gas, generated via anaerobic digestion and mainly composed of CH4. Systems for LFG capture and use consist of wells extracting biogas, which is then purified and used for electricity generation. This type of system are effective in reducing atmospheric emissions: by burning the CH4, it is converted into CO2, which is 28 times less potent as a greenhouse gas. If tracked, the reduced emissions can be certified so as to obtain carbon credits that can be traded on the voluntary market (VCM). This also supports the economic sustainability aspects, a sore point of this type of plant. The objective of this thesis was to build an integrated model to calculate the carbon credits that can be produced and their generative cost (CC). To do this, economic modelling was combined with the UNFCCC's ACM001 methodology, which is used to calculate emission reductions (ER) in LFG projects. Energy modelling aspects were fundamental to the design of the electricity generation system and a clear understanding of the context allowed to set the proper technological choices. Key findings indicate that technological choices minimally impact performance, with emission reductions mainly influenced by landfill size and methane fractions in LFG. The generative costs of credits is highly sensitive to electricity prices, while even in this case technological choices have a modest impact. Therefore, site selection is crucial to maximize emissions reductions and maintain competitive costs. A decision tree has been developed, based on results obtained, to guide pre-feasibility studies. Such projects can drive waste management improvements, pushing international cooperation and technology transfer. Private sector involvement, supported by economic instruments like VCM, is essential for sustainable waste management in sub-Saharan Africa.File | Dimensione | Formato | |
---|---|---|---|
Designing a comprehensive model for carbon credit project analysis - a case study on landfill gas is Sub-Saharan Africa.pdf
non accessibile
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223666