In recent years, extensive research has focused on the feasibility of removing space debris from Low Earth Orbit. With the development of missions targeting the removal of uncooperative objects, the industry is now looking ahead to the next step: achieving fully autonomous operations and enabling a single spacecraft to perform multiple removals. This advancement would enhance efficiency and significantly reduce operational costs. However, several challenges must be addressed to achieve this objective, including ensuring the servicing spacecraft possesses high dexterity and versatility. Since accurately characterizing most debris from the ground is extremely difficult or even impossible, it is essential to develop robust controllers capable of managing systems with substantial uncertainty. In this context, hereby is presented a possible general strategy for satellite modeling that incorporates the flexible effects generated by spacecraft appendages, such as solar arrays, antennas, and booms. The outlined modeling approach allows for the consideration of uncertain parameters in the system. Subsequently, through Hoo optimization, controllers can be synthesized to maximize system robustness against the uncertainties present in the model. The aim of this project is to understand how the level of detail in target debris modeling during the control synthesis phase can affect robust control properties. Additionally, the project investigates how the effects generated by nonlinear components of the dynamics interfere with the controllability of the system. These studies are of considerable importance in real-life Active Debris Removal scenarios, as they help determine the necessary level of detail required for successfully removing target debris. To accomplish this research, a real case study was utilized. Several models of varying accuracy were created to synthesize corresponding controllers. The performance of these controllers was analyzed and compared under both nominal and off-nominal conditions.
Negli ultimi anni la fattibilità di rimuovere detriti spaziali dall'orbita terrestre bassa è stata oggetto di dettagliata ricerca. A seguito dello sviluppo di missioni con l'obiettivo di raggiungere e rimuovere bersagli non cooperativi, l'industria è già concentrata sui prossimi passi: rendere queste operazioni completemente autonome e permettere ad un singolo satellite di rimuovere un elevato numero di bersagli. Queste capacità aumenterebbero notevolmente l'efficienza del processo abbattendone di conseguenza i costi. Tuttavia, per raggiungere questo scopo, diverse sfide vanno superate. Il servicer necessita di maneggevolezza e versatilità senza precedenti in modo da essere utile alla rimozione di detriti eterogenei tra loro. Inoltre, data la difficoltà intrinseca di caratterizzare i detriti da terra, si rende necessario lo sviluppo di controllori robusti all'incertezza. In questo contesto, questa tesi presenta un possibile approccio generico alla modellazione di satelliti dotati di appendici flessibili come pannelli solari, antenne e bracci propri di parametri incerti. Successivamente, attraverso l'ottimizzazione della norma Hoo dei sistemi ottenuti, è possibile sintetizzare dei controllori che massimizzano la robustezza rispetto all'incertezza presente sui modelli. Lo scopo ultimo del progetto è quello di studiare quanto l'accuratezza di modellazione del detrito bersaglio in fase di sintesi del controllore possa inficiare sulle performance di controllo robusto. Parallelamente, si va ad investigare in che modo gli effetti dovuti alle componenti non lineari della dinamica rotazionale possano interferire sulla controllabiità del sistema. Queste analisi sono di prioritaria importanza per gli scenari reali di rimozione attiva poichè permettono di definire il livello di dettaglio di modellazione richiesto alla rimozione del detrito. Per perseguire questa ricerca è stato usato un caso studio reale. Diversi modelli dinamici con diversi gradi di approssimazione sono stati creati per sintetizzare i corrispondenti controllori, la cui performance è stata infine analizzata e comparata in scenari sia nominali che non-nominali.
Robust Attitude Control Design for Active Debris Removal of Uncooperative Flexible Satellite
Todeschini, Luca
2023/2024
Abstract
In recent years, extensive research has focused on the feasibility of removing space debris from Low Earth Orbit. With the development of missions targeting the removal of uncooperative objects, the industry is now looking ahead to the next step: achieving fully autonomous operations and enabling a single spacecraft to perform multiple removals. This advancement would enhance efficiency and significantly reduce operational costs. However, several challenges must be addressed to achieve this objective, including ensuring the servicing spacecraft possesses high dexterity and versatility. Since accurately characterizing most debris from the ground is extremely difficult or even impossible, it is essential to develop robust controllers capable of managing systems with substantial uncertainty. In this context, hereby is presented a possible general strategy for satellite modeling that incorporates the flexible effects generated by spacecraft appendages, such as solar arrays, antennas, and booms. The outlined modeling approach allows for the consideration of uncertain parameters in the system. Subsequently, through Hoo optimization, controllers can be synthesized to maximize system robustness against the uncertainties present in the model. The aim of this project is to understand how the level of detail in target debris modeling during the control synthesis phase can affect robust control properties. Additionally, the project investigates how the effects generated by nonlinear components of the dynamics interfere with the controllability of the system. These studies are of considerable importance in real-life Active Debris Removal scenarios, as they help determine the necessary level of detail required for successfully removing target debris. To accomplish this research, a real case study was utilized. Several models of varying accuracy were created to synthesize corresponding controllers. The performance of these controllers was analyzed and compared under both nominal and off-nominal conditions.File | Dimensione | Formato | |
---|---|---|---|
Todeschini_Thesis.pdf
accessibile in internet per tutti
Dimensione
61.72 MB
Formato
Adobe PDF
|
61.72 MB | Adobe PDF | Visualizza/Apri |
Todeschini_Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
5.23 MB
Formato
Adobe PDF
|
5.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223778