This thesis addresses the design of a quasi-passive actuation system to be integrated into a lower limb exoskeleton (LLE) aimed at mitigating musculoskeletal disorders among industrial workers. The primary focus was creating a lightweight, flexible assistance mechanism suitable for lifting and carrying tasks, that can adjust the level of assistance based on the payload being handled. Through biomechanical analysis, a linear relationship between joint moments and angles was identified during squat lifting, guiding the design of an antagonistic configuration of non-linear springs. This configuration, optimized through Adams software simulations, effectively produced linear moment profiles with adjustable stiffness and equilibrium angle to assist the hip and knee joints. Additional considerations were taken to extend the behavior of the actuation system for payload-carrying assistance. Optimization processes on geometrical parameters enhanced the mechanism’s range of motion (ROM) by 20%, balancing spring rates and size of the mechanism to minimize the demand on pretensioning motors and reduce internal elastic forces. Additionally, a novel clutch design was introduced, improving system disengagement during non-assisted movements and enhancing user safety. The findings demonstrate the potential of this quasi-passive mechanism to reduce musculoskeletal disorder risks and enhance the understanding of how antagonistic mechanisms can be optimized for lightweight LLEs. The research contributes to advancing wearable robotic aids, emphasizing the balance between mechanical assistance and ergonomic design in industrial settings.
Questa tesi affronta la progettazione di un sistema di attuazione quasi passivo da integrare in un esoscheletro per gli arti inferiori con l’obiettivo di attenuare le malattie muscoloscheletriche dei lavoratori del settore industriale. L’obiettivo principale è stato quello di creare un meccanismo di assistenza leggero e flessibile, adatto a compiti di sollevamento e trasporto, in grado di regolare il livello di assistenza in base al carico da manipolare. Attraverso l’analisi biomeccanica, è stata identificata una relazione lineare tra i momenti e gli angoli delle articolazioni durante il sollevamento tipo squat, guidando la progettazione di una configurazione antagonista di molle non lineari. Questa configurazione, ottimizzata attraverso le simulazioni del software Adams, ha prodotto profili di momento lineari con rigidità e angolo di equilibrio regolabili per assistere le articolazioni dell’anca e del ginocchio. Sono state fatte ulteriori considerazioni per estendere il comportamento del sistema di attuazione per l’assistenza al trasporto dei pesi. I processi di ottimizzazione dei parametri geometrici hanno migliorato il raggio di movimento del sistema del 20%, bilanciando i tassi delle molle e le dimensioni del meccanismo per minimizzare la richiesta di motori di pretensionamento e ridurre le forze elastiche interne. Inoltre, è stato introdotto un design innovativo della frizione, migliorando il disinnesto del sistema durante i movimenti non assistiti e aumentando la sicurezza dell’utente. I risultati dimostrano il potenziale di questo meccanismo quasi passivo per ridurre i rischi di malattie muscoloscheletriche e migliorano la comprensione di come i meccanismi antagonisti possano essere ottimizzati per esoscheletri leggeri per gli arti inferiori. Questa ricerca contribuisce a far progredire gli ausili robotici indossabili, sottolineando l’equilibrio tra assistenza meccanica e design ergonomico in ambito industriale.
Design of an antagonistic mechanism as quasi-passive actuation for lower limbs assistance
MEDINA REVECO, DANIEL ALEJANDRO
2023/2024
Abstract
This thesis addresses the design of a quasi-passive actuation system to be integrated into a lower limb exoskeleton (LLE) aimed at mitigating musculoskeletal disorders among industrial workers. The primary focus was creating a lightweight, flexible assistance mechanism suitable for lifting and carrying tasks, that can adjust the level of assistance based on the payload being handled. Through biomechanical analysis, a linear relationship between joint moments and angles was identified during squat lifting, guiding the design of an antagonistic configuration of non-linear springs. This configuration, optimized through Adams software simulations, effectively produced linear moment profiles with adjustable stiffness and equilibrium angle to assist the hip and knee joints. Additional considerations were taken to extend the behavior of the actuation system for payload-carrying assistance. Optimization processes on geometrical parameters enhanced the mechanism’s range of motion (ROM) by 20%, balancing spring rates and size of the mechanism to minimize the demand on pretensioning motors and reduce internal elastic forces. Additionally, a novel clutch design was introduced, improving system disengagement during non-assisted movements and enhancing user safety. The findings demonstrate the potential of this quasi-passive mechanism to reduce musculoskeletal disorder risks and enhance the understanding of how antagonistic mechanisms can be optimized for lightweight LLEs. The research contributes to advancing wearable robotic aids, emphasizing the balance between mechanical assistance and ergonomic design in industrial settings.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Medina.pdf
non accessibile
Descrizione: Thesis main text
Dimensione
13.11 MB
Formato
Adobe PDF
|
13.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223798