This work focuses on the synthesis of innovative magnetic metal-organic frameworks (MOFs) and their use in water treatment for the capture of PFOA (perfluorooctanoic acid), a persistent and widespread and carcinogenic pollutant which belongs the emerging contaminant class of poly- and perfluoroalkyl substances (PFASs). MOFs are porous materials suitable for PFAS capture, thanks to high specific surface areas and favourable interactions with these pollutants. Magnetite particles were synthesized and used as substrates for the growth of stable zirconium-based MOFs, with the aim to easily recover the powders after treatment with the use of magnets. High-pressure and temperature solvothermal method was the synthesis route of choice. Solvents like dimethylformamide, but also more environmentally friendly ethanol and isopropanol were used for the syntheses. Surface functionalization of magnetite was carried out for allowing a better heterogeneous nucleation of MOFs. Characterization with infrared spectroscopy and powder X-ray diffraction showed that magnetic MOFs were successfully synthesized via this novel process, despite challenges like the low solubility of reagents and difficulties in obtaining crystalline MOF phases. To evaluate their capture efficiency, the magnetic powders were suspended in an aqueous PFOA solution under stirring and then separated with a magnet. HPLC-MS analysis of treated water samples showed very high removal efficiencies, up to 99%. Moreover, powders used for multiple consecutive treatments maintained a satisfactory performance for up to ten cycles, demonstrating good adsorption capacity, robustness and reusability. These results proved that magnetic MOFs are effective materials for PFOA capture in water: their high efficiencies and reusability, along with MOFs’ exceptional tunability make them promising candidates for PFASs remediation in water bodies.
L’obiettivo di questa tesi è incentrato sulla sintesi di innovativi framework metallorganici (MOF) magnetici e il loro impiego nel trattamento delle acque, in particolare nella cattura del PFOA (acido perfluoroottanoico), un persistente e diffuso inquinante cancerogeno della categoria dei contaminanti emergenti noti come PFAS (sostanze poli- e perfluoroalchiliche). I MOF sono materiali porosi ideali per la cattura dei PFAS, grazie ad un’area superficiale specifica elevata e interazioni favorevoli con questi composti. La magnetite in polvere è stata sintetizzata e impiegata come substrato per la sintesi di MOF a base di zirconio, per consentire un recupero post-trattamento rapido e agevole dall’acqua tramite magneti. La sintesi è stata eseguita tramite processo solvotermale ad alta temperatura e pressione con l’uso di dimetilformammide, ma anche etanolo e isopropanolo per ragioni di maggiore sostenibilità. Per agevolare la nucleazione eterogenea dei MOF è stata impiegata magnetite funzionalizzata. Analisi di spettroscopia a infrarossi e diffrazione di polveri a raggi X hanno confermato la presenza di MOF sulla superficie della magnetite, nonostante la scarsa solubilità dei reagenti e la difficoltà nell’ottenere fasi altamente cristalline. Per valutarne l’efficacia, le polveri sono state messe in agitazione in soluzioni acquose di PFOA e poi separate con l’uso di un magnete. L’analisi di campioni d’acqua prelevati post-trattamento con cromatografia liquida ad alta prestazione-spettrometria di massa (HPLC-MS) ha mostrato ottimi risultati nella rimozione di PFOA, con efficienze di rimozione che arrivano al 99%. Inoltre, polveri testate per diversi cicli hanno mantenuto alte efficienze fino a dieci trattamenti consecutivi: ciò dimostra un’elevata capacità di adsorbimento e durabilità. Questi risultati dimostrano quanto i MOF magnetici siano materiali efficaci per la rimozione di PFOA dall’acqua: le loro elevate prestazioni, riutilizzabilità e versatilità li rende promettenti candidati per il trattamento delle acque contaminate da PFAS.
Zirconium based magnetic metal-organic frameworks for perfluorooctanoic acid capture from water
PEDRAZZOLI, MARCO
2023/2024
Abstract
This work focuses on the synthesis of innovative magnetic metal-organic frameworks (MOFs) and their use in water treatment for the capture of PFOA (perfluorooctanoic acid), a persistent and widespread and carcinogenic pollutant which belongs the emerging contaminant class of poly- and perfluoroalkyl substances (PFASs). MOFs are porous materials suitable for PFAS capture, thanks to high specific surface areas and favourable interactions with these pollutants. Magnetite particles were synthesized and used as substrates for the growth of stable zirconium-based MOFs, with the aim to easily recover the powders after treatment with the use of magnets. High-pressure and temperature solvothermal method was the synthesis route of choice. Solvents like dimethylformamide, but also more environmentally friendly ethanol and isopropanol were used for the syntheses. Surface functionalization of magnetite was carried out for allowing a better heterogeneous nucleation of MOFs. Characterization with infrared spectroscopy and powder X-ray diffraction showed that magnetic MOFs were successfully synthesized via this novel process, despite challenges like the low solubility of reagents and difficulties in obtaining crystalline MOF phases. To evaluate their capture efficiency, the magnetic powders were suspended in an aqueous PFOA solution under stirring and then separated with a magnet. HPLC-MS analysis of treated water samples showed very high removal efficiencies, up to 99%. Moreover, powders used for multiple consecutive treatments maintained a satisfactory performance for up to ten cycles, demonstrating good adsorption capacity, robustness and reusability. These results proved that magnetic MOFs are effective materials for PFOA capture in water: their high efficiencies and reusability, along with MOFs’ exceptional tunability make them promising candidates for PFASs remediation in water bodies.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Pedrazzoli_Executive.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
2024_07_Pedrazzoli_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis document
Dimensione
5.61 MB
Formato
Adobe PDF
|
5.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/223926