This work investigates the possibility of adopting functionalized graphene oxide (GO) as the starting material to produce novel self-standing proton conductors, exploiting the well-known self-assembling and hydrophilic features imparted to GO by its oxygenated groups. However, pure GO requires a substantial enhancement of its proton-carrying and structural properties to compete with Nafion®, the state-of-the-art ionomer employed in proton exchange membrane fuel cells (PEMFCs). In this regard, sulfonated graphene oxide (SGO) and graphene oxide-naphthalene sulfonate (GONS) membranes were prepared by using sulfuric acid and naphthalene sulfonate molecules as functionalizing agents, with the aim to incorporate sulfonic acid moieties into GO and increase its proton conductivity. Sodium tetraborate decahydrate (SBD) was also tested as a potential additive to obtain a crosslinked SGO-B membrane, so as to try to improve the structural stability of the most promising SGO sample. The effect of six different acid-to-GO, three GO-to-NS, and two GO-to-SBD molar ratios was assessed in terms of variations to the morphology, microstructure, and thermal behavior of the produced materials. Optical and scanning electron microscopies, XRD, thermogravimetry, and the analysis of the optical contact angle, as well as a wide spectroscopic survey via ATR-FTIR, Raman, EDX, and XP spectroscopies, were carried out to this aim. Selected specimens were also characterized from the viewpoint of the features required by the desired application in PEMFCs, i.e., ion exchange capacity, water uptake, and proton conductivity by means of electrochemical impedance spectroscopy. The last two properties were studied by adopting three relative humidity conditions (42%, 53%, and 95%) and five temperatures in the 20–100 °C range. A preliminary evaluation of the mechanical behavior was conducted via tensile tests as well. The acquired results were compared with those of two reference membranes, i.e., virgin GO and commercial Nafion® 212. Finally, the best samples belonging to the three categories (SGO, SGO-B, and GONS) were eventually chosen for an introductory analysis of their environmental performance by means of the life cycle assessment methodology. The functionalization of GO proved that Nafion® 212 can be overcome in terms of water retention and proton-carrying ability, especially at humidification lower than 60% and at temperatures higher than 60 °C. Nevertheless, all proposed GO-based materials failed to provide a sufficient mechanical resistance for a successful implementation in a running fuel cell, even after SBD crosslinking. Furthermore, their manufacturing process is currently less energy efficient than the one of Nafion® 212. Thus, despite the improved proton conduction, a further enhancement of the last two features, via a proper optimization of the composition and a suitable scale up of the preparation procedure, is still required to make the novel GO-based membranes developed in this work a feasible alternative to Nafion® as a proton conductor for PEMFCs.
Questo lavoro indaga il possibile utilizzo dell'ossido di grafene (GO) funzionalizzato come materiale di partenza per produrre nuovi conduttori protonici self-standing, sfruttando le risapute proprietà self-assembling e idrofiliche impartitegli dai suoi gruppi ossigenati. Tuttavia, la stabilità strutturale e la conducibilità protonica del GO tal quale richiedono un sostanziale miglioramento per poter competere con quelle del Nafion®, lo ionomero maggiormente impiegato nelle celle a combustibile con membrana a scambio protonico (PEMFCs). A questo proposito, acido solforico e molecole contenenti naftalene solfonato (NS) sono stati utilizzati per la preparazione di membrane a base di ossido di grafene solfonato (SGO) oppure di una miscela di GO e NS (GONS), al fine di introdurre gruppi solfonici all’interno del GO e di aumentarne la conducibilità protonica. Il sodio tetraborato decaidrato (SBD) è stato inoltre sperimentato come potenziale additivo reticolante per la produzione di una membrana SGO-B, in modo da cercare di migliorare le proprietà strutturali del campione di SGO più promettente. L'effetto di diversi rapporti molari acido-GO, GO-NS e GO-SBD è stato valutato in termini di variazioni morfologiche, microstrutturali e del comportamento termico dei materiali prodotti. A questo scopo sono state effettuate analisi di microscopia ottica ed elettronica a scansione, XRD, termogravimetriche e dell'angolo di contatto statico, nonché un'ampia indagine tramite spettroscopie ATR-FTIR, Raman, EDX e XP. Campioni selezionati sono stati inoltre caratterizzati dal punto di vista delle proprietà necessarie a una possibile applicazione nelle PEMFCs, ovvero capacità di scambio ionico, assorbimento di acqua e conducibilità protonica tramite spettroscopia a impedenza elettrochimica. Le ultime due proprietà sono state studiate adottando tre condizioni di umidità relativa (42%, 53% e 95%) e cinque temperature nell'intervallo 20–100 °C. Inoltre, le proprietà meccaniche sono state misurate in via preliminare mediante prove di trazione. I risultati sono stati confrontati con quelli di due membrane di riferimento, ovvero GO tal quale e Nafion® 212. I campioni migliori appartenenti alle tre tipologie (SGO, SGO-B e GONS) sono stati infine scelti per una valutazione preliminare delle loro prestazioni ambientali attraverso il metodo dell’analisi del ciclo di vita. La funzionalizzazione del GO ha permesso di ottenere un maggiore assorbimento di acqua e una conducibilità protonica più elevata rispetto al Nafion® 212, soprattutto a umidità inferiori al 60% e a temperature superiori ai 60 °C. Tuttavia, i materiali proposti non garantiscono una resistenza meccanica sufficiente, anche nel caso della reticolazione con SBD. Inoltre, il loro processo di produzione è attualmente meno efficiente dal punto di vista del consumo di energia rispetto a quello del Nafion® 212. Pertanto, un ulteriore miglioramento degli ultimi due aspetti, mediante un'adeguata ottimizzazione della composizione e della procedura di produzione, è necessario per poter rendere le nuove membrane sviluppate in questo lavoro un’alternativa credibile al Nafion® come possibile conduttore protonico per le PEMFCs.
Beyond Nafion : investigation of self-standing sulfonated graphene oxide membranes as alternative proton conductors for PEM fuel cells
BASSO PERESSUT, ANDREA STEFANO
2023/2024
Abstract
This work investigates the possibility of adopting functionalized graphene oxide (GO) as the starting material to produce novel self-standing proton conductors, exploiting the well-known self-assembling and hydrophilic features imparted to GO by its oxygenated groups. However, pure GO requires a substantial enhancement of its proton-carrying and structural properties to compete with Nafion®, the state-of-the-art ionomer employed in proton exchange membrane fuel cells (PEMFCs). In this regard, sulfonated graphene oxide (SGO) and graphene oxide-naphthalene sulfonate (GONS) membranes were prepared by using sulfuric acid and naphthalene sulfonate molecules as functionalizing agents, with the aim to incorporate sulfonic acid moieties into GO and increase its proton conductivity. Sodium tetraborate decahydrate (SBD) was also tested as a potential additive to obtain a crosslinked SGO-B membrane, so as to try to improve the structural stability of the most promising SGO sample. The effect of six different acid-to-GO, three GO-to-NS, and two GO-to-SBD molar ratios was assessed in terms of variations to the morphology, microstructure, and thermal behavior of the produced materials. Optical and scanning electron microscopies, XRD, thermogravimetry, and the analysis of the optical contact angle, as well as a wide spectroscopic survey via ATR-FTIR, Raman, EDX, and XP spectroscopies, were carried out to this aim. Selected specimens were also characterized from the viewpoint of the features required by the desired application in PEMFCs, i.e., ion exchange capacity, water uptake, and proton conductivity by means of electrochemical impedance spectroscopy. The last two properties were studied by adopting three relative humidity conditions (42%, 53%, and 95%) and five temperatures in the 20–100 °C range. A preliminary evaluation of the mechanical behavior was conducted via tensile tests as well. The acquired results were compared with those of two reference membranes, i.e., virgin GO and commercial Nafion® 212. Finally, the best samples belonging to the three categories (SGO, SGO-B, and GONS) were eventually chosen for an introductory analysis of their environmental performance by means of the life cycle assessment methodology. The functionalization of GO proved that Nafion® 212 can be overcome in terms of water retention and proton-carrying ability, especially at humidification lower than 60% and at temperatures higher than 60 °C. Nevertheless, all proposed GO-based materials failed to provide a sufficient mechanical resistance for a successful implementation in a running fuel cell, even after SBD crosslinking. Furthermore, their manufacturing process is currently less energy efficient than the one of Nafion® 212. Thus, despite the improved proton conduction, a further enhancement of the last two features, via a proper optimization of the composition and a suitable scale up of the preparation procedure, is still required to make the novel GO-based membranes developed in this work a feasible alternative to Nafion® as a proton conductor for PEMFCs.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Basso_Peressut.pdf
solo utenti autorizzati a partire dal 26/06/2027
Descrizione: Manoscritto tesi
Dimensione
26.49 MB
Formato
Adobe PDF
|
26.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/224013