Metallic structures are sensitive to cracks generation and propagation when subjected to repeated loadings, such as traffic-loads, wind-induced vibrations and waves, defining a consequent accumulation of damage typical of fatigue stresses. In the recent years, increasing concerns regarding the fatigue crack development in civil metallic structures lead to the urgent need of efficient strengthening and repairing techniques in order to avoid catastrophic social and financial losses consequent to their possible collapses. It concerns both the design of new structural elements and the strengthening of existing structural components, which are facing long service lives, increasing load and generally need for reinforcement. Very recently, the application of Fiber Reinforced Polymers (FRP) composite materials on damaged steel structures, in particular of high strength Carbon Fiber Reinforced Polymers (CFRP), has been adopted as an effective solution to restore their bearing capacity or extend their fatigue life. Their application revealed to be more efficient and alternative to the traditional strengthening techniques, in reason of their own features such as: a high strength-to-weight ratio, low invasiveness, do not corrode, and entail for a limited increment of the dead load. Different strengthening systems have been proposed and new issues related to their application have arisen, which need to be properly considered and investigated. In particular, the application of externally bonded (EB) CFRP reinforcements, directly bonded to the substrate with specific epoxy-based adhesives, showed their effectiveness in reducing crack growth rate and in extending fatigue life. The load is transferred from the substrate to the composite through shear stress exchange mechanisms occurring at the bonded interface. Therefore, in EB CFRP-to-steel joints the behavior of the interface is crucial in guaranteeing the effectiveness of the bonded system response and represents one of the main issues of such applications. Failure usually occurs due to cohesive debonding within the adhesive, and thus the system response strongly depends on the mechanical and physical properties of the structural adhesive employed to bond the two adherends, namely the composite and the steel substrate. Two main classes of structural epoxy adhesives are presented in literature. The first one is generally referred to as brittle adhesive, showing a brittle and an approximately linear behavior. While the second one is generally referred to as ductile, showing a ductile and non-linear behavior. The latter type can combine good mechanical properties and high ductility, representing a valid solution for EB CFRP strengthening applications, improving their load bearing and strain capacity. When subjected to fatigue cyclic loadings, the constituents of the composite patch, i.e., the composite and the adhesive, can exhibit a progressive degradation of their properties, reducing over cycles their stiffness and bearing capacity and thus leading, at the end, at the collapse of the bonded system. In this context, the present work proposes an experimental and numerical characterization of the fatigue behavior of EB CFRP-to-steel systems under cyclic loading conditions, focusing on its fundamental aspects. Experimental tests aimed at investigating the bond behavior are conducted at the Materials Testing Laboratory (MTS) of Politecnico di Milano. Single-lap direct shear (DS) tests are performed under quasi-static monotonic and fatigue cyclic loading conditions. A new toughened epoxy adhesive recently proposed for the fatigue strengthening of steel elements is adopted and its performances investigated. Toughened adhesives resulted to be characterized by a more pronounced non-linear behavior, a lower elastic modulus and strength, but a larger ductility than traditional linear epoxy adhesives. Moreover, they combine high toughness with good mechanical properties and ductility. They finally result in a higher fracture energy of the cohesive interface than that of standard adhesives, which allows for reaching higher CFRP-to-steel ultimate bond capacity. A numerical characterization of these systems response is then provided. In fact, the development of reliable computational models predicting fatigue cracking is desirable and distinguished in the literature. A cohesive zone model (CZM) approach is adopted, and proper cyclic cohesive zone models (CCZM) are introduced. One important aspect usually related to the use of a cohesive zone law refers to its parameter identification and calibration, which is necessary to guarantee a reliable use of the model itself. Consequently, proper parameter identification strategies based on stochastic inverse analysis are developed for material characterization, dealing both with fatigue crack growth in a bulk element and at an interface between two materials. The cyclic degradation of the composite patch has been usually individuated in the behavior of the adhesive interface only, according to the previously mentioned cohesive approaches. However, because of the presence of new structural adhesives with higher performances, larger loads and deformations can be sustained. In this context, also the contribution of the fatigue behavior of the composite element (plate or sheet) to the global system response could play a significant role and thus must be taken into account. Therefore, a preliminary experimental and numerical investigation of the composite fatigue damage behavior and its possible influence on the bonded joint response is conducted. Tensile fatigue tests on rectangular CFRP laminate coupons are performed. Then, a fatigue residual stiffness model is adopted for the composite and the fatigue degradation of DS specimens is numerically modelled by considering separately the damage at the bonded interface and in the composite material.
Le strutture metalliche sono sensibili alla generazione e alla propagazione di cricche quando sono sottoposte a carichi ripetuti, come quelli del traffico, delle vibrazioni indotte dal vento e delle onde, definendo un conseguente accumulo di danni tipici delle sollecitazioni di fatica. Negli ultimi anni, le crescenti preoccupazioni relative allo sviluppo di cricche da fatica nelle strutture metalliche civili hanno portato all'urgente necessità di efficaci tecniche di rinforzo e riparazione, al fine di evitare catastrofiche perdite sociali e finanziarie conseguenti a possibili crolli. Ciò riguarda sia la progettazione di nuovi elementi strutturali sia il rinforzo di componenti strutturali esistenti, che devono affrontare lunghe vite di servizio, carichi crescenti e generalmente la necessità di rinforzo. Recentemente, l'applicazione di materiali compositi a base di polimeri rinforzati con fibre (FRP) su strutture in acciaio danneggiate, in particolare di polimeri rinforzati con fibre di carbonio ad alta resistenza (CFRP), è stata adottata come soluzione efficace per ripristinare la loro capacità portante o estendere la loro vita a fatica. La loro applicazione si è rivelata più efficace e alternativa alle tecniche di rinforzo tradizionali, in ragione delle loro caratteristiche quali: un elevato rapporto resistenza-peso, bassa invasività, non si corrodono e comportano un incremento limitato del carico morto. Sono stati proposti diversi sistemi di rinforzo e sono emerse nuove problematiche legate alla loro applicazione, che devono essere adeguatamente considerate e indagate. In particolare, l'applicazione di rinforzi in CFRP a legame esterno (EB), incollati direttamente al substrato con specifici adesivi a base epossidica, ha dimostrato la loro efficacia nel ridurre il tasso di crescita delle cricche e nell'estendere la vita a fatica. Il carico viene trasferito dal substrato al composito attraverso meccanismi di scambio delle sollecitazioni di taglio che si verificano all'interfaccia incollata. Pertanto, nelle giunzioni EB CFRP-acciaio il comportamento dell'interfaccia è cruciale per garantire l'efficacia della risposta del sistema di incollaggio e rappresenta uno dei problemi principali di tali applicazioni. Il cedimento avviene solitamente a causa del debonding coesivo all'interno dell'adesivo, e quindi la risposta del sistema dipende fortemente dalle proprietà meccaniche e fisiche dell'adesivo strutturale utilizzato per legare i due aderenti, ovvero il composito e il substrato di acciaio. In letteratura sono presenti due classi principali di adesivi epossidici strutturali. La prima è generalmente definita adesivo fragile, che mostra un comportamento fragile e approssimativamente lineare. La seconda è generalmente definita duttile e mostra un comportamento duttile e non lineare. Quest'ultimo tipo può combinare buone proprietà meccaniche ed elevata duttilità, rappresentando una valida soluzione per le applicazioni di rinforzo del CFRP EB, migliorando la loro capacità di carico e di deformazione. Quando sono sottoposti a carichi ciclici di fatica, i componenti del patch composito, cioè il composito e l'adesivo, possono presentare un progressivo degrado delle loro proprietà, riducendo nel corso dei cicli la loro rigidità e capacità portante e portando così, alla fine, al collasso del sistema incollato. In questo contesto, il presente lavoro propone una caratterizzazione sperimentale e numerica del comportamento a fatica dei sistemi EB CFRP-acciaio in condizioni di carico ciclico, concentrandosi sui suoi aspetti fondamentali. Le prove sperimentali volte a indagare il comportamento del legame sono state condotte presso il Laboratorio Prove Materiali (MTS) del Politecnico di Milano. Vengono eseguite prove di taglio diretto (DS) a singolo lapsus in condizioni di carico quasi statico monotono e ciclico a fatica. È stato adottato un nuovo adesivo epossidico temprato, recentemente proposto per il rinforzo a fatica di elementi in acciaio, e sono state studiate le sue prestazioni. Gli adesivi temprati sono risultati caratterizzati da un comportamento non lineare più pronunciato, da un modulo elastico e da una resistenza inferiori, ma da una maggiore duttilità rispetto ai tradizionali adesivi epossidici lineari. Inoltre, combinano un'elevata tenacità con buone proprietà meccaniche e duttilità. Infine, l'energia di frattura dell'interfaccia coesiva è superiore a quella degli adesivi standard, il che consente di raggiungere una maggiore capacità di legame finale tra CFRP e acciaio. Viene quindi fornita una caratterizzazione numerica della risposta di questi sistemi. In effetti, lo sviluppo di modelli computazionali affidabili per la previsione delle cricche da fatica è auspicabile e si distingue in letteratura. Viene adottato un approccio basato su modelli a zone coesive (CZM) e vengono introdotti modelli a zone coesive ciclici (CCZM). Un aspetto importante solitamente legato all'uso di una legge a zone coesive si riferisce alla sua identificazione e calibrazione dei parametri, necessaria per garantire un uso affidabile del modello stesso. Di conseguenza, vengono sviluppate strategie di identificazione dei parametri basate sull'analisi stocastica inversa per la caratterizzazione dei materiali, trattando sia la crescita di cricche a fatica in un elemento massivo che all'interfaccia tra due materiali. Il degrado ciclico del patch composito è stato solitamente individuato nel comportamento della sola interfaccia adesiva, secondo gli approcci coesivi precedentemente menzionati. Tuttavia, grazie alla presenza di nuovi adesivi strutturali con prestazioni più elevate, è possibile sostenere carichi e deformazioni maggiori. In questo contesto, anche il contributo del comportamento a fatica dell'elemento composito (piastra o lastra) alla risposta globale del sistema potrebbe giocare un ruolo significativo e quindi deve essere preso in considerazione. Pertanto, è stata condotta un'indagine preliminare sperimentale e numerica del comportamento a fatica del composito e della sua possibile influenza sulla risposta del giunto incollato. Sono state eseguite prove di fatica a trazione su coupon rettangolari di laminato CFRP. Quindi, si adotta un modello di rigidità residua a fatica per il composito e si modella numericamente il degrado a fatica dei provini DS, considerando separatamente il danno all'interfaccia incollata e nel materiale composito.
Behavior of externally bonded CFRP-to-steel systems under fatigue loadings
PAPA, TOMMASO
2023/2024
Abstract
Metallic structures are sensitive to cracks generation and propagation when subjected to repeated loadings, such as traffic-loads, wind-induced vibrations and waves, defining a consequent accumulation of damage typical of fatigue stresses. In the recent years, increasing concerns regarding the fatigue crack development in civil metallic structures lead to the urgent need of efficient strengthening and repairing techniques in order to avoid catastrophic social and financial losses consequent to their possible collapses. It concerns both the design of new structural elements and the strengthening of existing structural components, which are facing long service lives, increasing load and generally need for reinforcement. Very recently, the application of Fiber Reinforced Polymers (FRP) composite materials on damaged steel structures, in particular of high strength Carbon Fiber Reinforced Polymers (CFRP), has been adopted as an effective solution to restore their bearing capacity or extend their fatigue life. Their application revealed to be more efficient and alternative to the traditional strengthening techniques, in reason of their own features such as: a high strength-to-weight ratio, low invasiveness, do not corrode, and entail for a limited increment of the dead load. Different strengthening systems have been proposed and new issues related to their application have arisen, which need to be properly considered and investigated. In particular, the application of externally bonded (EB) CFRP reinforcements, directly bonded to the substrate with specific epoxy-based adhesives, showed their effectiveness in reducing crack growth rate and in extending fatigue life. The load is transferred from the substrate to the composite through shear stress exchange mechanisms occurring at the bonded interface. Therefore, in EB CFRP-to-steel joints the behavior of the interface is crucial in guaranteeing the effectiveness of the bonded system response and represents one of the main issues of such applications. Failure usually occurs due to cohesive debonding within the adhesive, and thus the system response strongly depends on the mechanical and physical properties of the structural adhesive employed to bond the two adherends, namely the composite and the steel substrate. Two main classes of structural epoxy adhesives are presented in literature. The first one is generally referred to as brittle adhesive, showing a brittle and an approximately linear behavior. While the second one is generally referred to as ductile, showing a ductile and non-linear behavior. The latter type can combine good mechanical properties and high ductility, representing a valid solution for EB CFRP strengthening applications, improving their load bearing and strain capacity. When subjected to fatigue cyclic loadings, the constituents of the composite patch, i.e., the composite and the adhesive, can exhibit a progressive degradation of their properties, reducing over cycles their stiffness and bearing capacity and thus leading, at the end, at the collapse of the bonded system. In this context, the present work proposes an experimental and numerical characterization of the fatigue behavior of EB CFRP-to-steel systems under cyclic loading conditions, focusing on its fundamental aspects. Experimental tests aimed at investigating the bond behavior are conducted at the Materials Testing Laboratory (MTS) of Politecnico di Milano. Single-lap direct shear (DS) tests are performed under quasi-static monotonic and fatigue cyclic loading conditions. A new toughened epoxy adhesive recently proposed for the fatigue strengthening of steel elements is adopted and its performances investigated. Toughened adhesives resulted to be characterized by a more pronounced non-linear behavior, a lower elastic modulus and strength, but a larger ductility than traditional linear epoxy adhesives. Moreover, they combine high toughness with good mechanical properties and ductility. They finally result in a higher fracture energy of the cohesive interface than that of standard adhesives, which allows for reaching higher CFRP-to-steel ultimate bond capacity. A numerical characterization of these systems response is then provided. In fact, the development of reliable computational models predicting fatigue cracking is desirable and distinguished in the literature. A cohesive zone model (CZM) approach is adopted, and proper cyclic cohesive zone models (CCZM) are introduced. One important aspect usually related to the use of a cohesive zone law refers to its parameter identification and calibration, which is necessary to guarantee a reliable use of the model itself. Consequently, proper parameter identification strategies based on stochastic inverse analysis are developed for material characterization, dealing both with fatigue crack growth in a bulk element and at an interface between two materials. The cyclic degradation of the composite patch has been usually individuated in the behavior of the adhesive interface only, according to the previously mentioned cohesive approaches. However, because of the presence of new structural adhesives with higher performances, larger loads and deformations can be sustained. In this context, also the contribution of the fatigue behavior of the composite element (plate or sheet) to the global system response could play a significant role and thus must be taken into account. Therefore, a preliminary experimental and numerical investigation of the composite fatigue damage behavior and its possible influence on the bonded joint response is conducted. Tensile fatigue tests on rectangular CFRP laminate coupons are performed. Then, a fatigue residual stiffness model is adopted for the composite and the fatigue degradation of DS specimens is numerically modelled by considering separately the damage at the bonded interface and in the composite material.File | Dimensione | Formato | |
---|---|---|---|
Behavior of Externally Bonded CFRP-to-Steel Systems under Fatigue Loadings.pdf
non accessibile
Descrizione: Tesi di dottorato
Dimensione
13.68 MB
Formato
Adobe PDF
|
13.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/224332