Ferritic stainless steels (FSS), which are fundamentally ferromagnetic, are vital engineering materials renowned for their magnetic, corrosion resistance, and mechanical properties. Addressing the problem involves tackling the challenges encountered in the current industrial-based research, this thesis defines optimal reduction rates of cold wire drawing and recrystallization annealing conditions for FSS, in tandem with the aforementioned multifaceted properties, pertinent to electromagnetic devices and applications. The novelty of the research lies in a comprehensive investigation into the sophisticated relationship among microstructural and textural evolution, magnetic response, mechanical properties, as well as corrosion resistance in two grades of FSS, namely EN 1.4105 and EN 1.4106 for optimization of the material selections for real-world applications. Through a combination of experimental techniques and theoretical modeling, the effects of cold drawing reduction rate (RR), annealing soaking temperature (AST), and incubation time (AIT) on the microstructure, texture, residual stresses, and consequential properties of the FSS grades are thoroughly examined. The study traces the microstructural evolution from cold-deformed elongated grains to recrystallized equiaxed grains, revealing the nucleation, growth, and orientation mechanisms during recrystallization. It would be noteworthy that the rapid nucleation is observed by increased RR, and AST, with findings corroborating well with the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The microstructural analysis reveals a more substantial responsiveness of grain size to the varied RR in EN 1.4105 and a slighter changing in EN 1.4106, emphasizing the complex relationship between RR and final grain size. Furthermore, cold wire drawing induces refined microstructures through recrystallization with further lower lattice misorientation, leading to improved magnetic, mechanical, and corrosion resistance properties. The corrosion behavior of the FSS grades is evaluated through potentiostatic-based corrosion analysis by immersion inside sulfuric acid electrolyte solution (SAES) and sodium chloride electrolyte solution (SCES). Surprisingly, despite exhibiting active anodic behavior in SCES without passivation formation, the FSS grades demonstrate better corrosion resistance compared to SAES, in terms of substantially-lower corrosion current densities and higher corrosion potentials. This unexpected finding features the inherent corrosion resistance mechanisms of FSS in chlorinated environments alongside the superior passivation-oriented behavior in such an acidic medium and the potential for tailored microstructural engineering to optimize corrosion resistance. All in all, this research contributes to a deeper understanding of the complex relationship among microstructures and multi-faceted properties in FSS, with implications for the design of corrosion-resistant materials for the industrial applications, mainly solenoid valves and electrovalves.
Gli acciai inox ferritici (FSS), intrinsecamente ferromagnetici, sono materiali ingegneristici di fondamentale importanza, rinomati per le loro proprietà magnetiche, di resistenza alla corrosione e meccaniche. Questa tesi definisce i tassi di riduzione ottimali del processo di trafilatura a freddo e le condizioni di ricottura di ricristallizzazione per gli FSS, in tandem con le suddette proprietà multifaccettate, tipiche dei dispositivi e delle applicazioni elettromagnetici. L'originalità della ricerca risiede in un'indagine completa della relazione tra l'evoluzione microstrutturale, della tessitura cristallografica, la risposta magnetica, le proprietà meccaniche, nonché della resistenza alla corrosione di due gradi di FSS, precisamente l’EN 1.4105 e l’EN 1.4106, per l'ottimizzazione della scelta del materiale in ambito industriale. Attraverso una combinazione di tecniche sperimentali e modellazione teorica, vengono esaminati a fondo gli effetti del tasso di riduzione della trafilatura a freddo (RR), della temperatura di ricottura (AST) e del tempo di incubazione (AIT) sulla microstruttura, la tessitura, le tensioni residue e le conseguenti proprietà degli FSS. Lo studio traccia l'evoluzione microstrutturale da grani allungati deformati a freddo a grani equiassici ricristallizzati, rivelando i meccanismi di nucleazione, crescita e orientamento durante la ricristallizzazione. La nucleazione più rapida si ha con l'aumento di RR e AST, con risultati che corroborano bene la teoria di Johnson-Mehl-Avrami-Kolmogorov (JMAK). L'analisi microstrutturale rivela una maggiore variazione della dimensione dei grani al variare di RR nell’acciaio EN 1.4105 e una variazione meno marcata nell’ EN 1.4106, enfatizzando la complessa relazione tra RR e dimensioni finali dei grani. Inoltre, la trafilatura a freddo induce microstrutture più fini grazie alla ricristallizzazione con una ulteriore minore misorientazione dei grani, portando a miglioramenti delle proprietà magnetiche e meccaniche. Il comportamento a corrosione dei FSS è valutato mediante analisi della corrosione tramite prove potenziodinamiche, in acido solforico (SAES) e in cloruro di sodio (SCES). Gli acciai analizzati dimostrano una migliore resistenza alla corrosione in SCES rispetto a SAES , in termini di densità di corrente di corrosione significativamente inferiore e potenziali di corrosione più alti. Questo risultato mette in evidenza i meccanismi di resistenza intrinseca alla corrosione degli FSS in ambienti clorurati, insieme al comportamento orientato alla passivazione in mezzo acido e il potenziale per un'ingegneria microstrutturale mirata per ottimizzare la resistenza alla corrosione. In conclusione, questa ricerca contribuisce a una comprensione più approfondita della complessa relazione tra microstrutture e proprietà multifaccettate negli FSS, con implicazioni per la progettazione di materiali resistenti alla corrosione per applicazioni industriali, principalmente valvole solenoidi ed elettrovalvole.
Integrated cold-deformation and the subsequent recrystallization effects on ferritic/ferromagnetic stainless steels aimed for electromagnetic applications
Bazri, Shahab
2023/2024
Abstract
Ferritic stainless steels (FSS), which are fundamentally ferromagnetic, are vital engineering materials renowned for their magnetic, corrosion resistance, and mechanical properties. Addressing the problem involves tackling the challenges encountered in the current industrial-based research, this thesis defines optimal reduction rates of cold wire drawing and recrystallization annealing conditions for FSS, in tandem with the aforementioned multifaceted properties, pertinent to electromagnetic devices and applications. The novelty of the research lies in a comprehensive investigation into the sophisticated relationship among microstructural and textural evolution, magnetic response, mechanical properties, as well as corrosion resistance in two grades of FSS, namely EN 1.4105 and EN 1.4106 for optimization of the material selections for real-world applications. Through a combination of experimental techniques and theoretical modeling, the effects of cold drawing reduction rate (RR), annealing soaking temperature (AST), and incubation time (AIT) on the microstructure, texture, residual stresses, and consequential properties of the FSS grades are thoroughly examined. The study traces the microstructural evolution from cold-deformed elongated grains to recrystallized equiaxed grains, revealing the nucleation, growth, and orientation mechanisms during recrystallization. It would be noteworthy that the rapid nucleation is observed by increased RR, and AST, with findings corroborating well with the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The microstructural analysis reveals a more substantial responsiveness of grain size to the varied RR in EN 1.4105 and a slighter changing in EN 1.4106, emphasizing the complex relationship between RR and final grain size. Furthermore, cold wire drawing induces refined microstructures through recrystallization with further lower lattice misorientation, leading to improved magnetic, mechanical, and corrosion resistance properties. The corrosion behavior of the FSS grades is evaluated through potentiostatic-based corrosion analysis by immersion inside sulfuric acid electrolyte solution (SAES) and sodium chloride electrolyte solution (SCES). Surprisingly, despite exhibiting active anodic behavior in SCES without passivation formation, the FSS grades demonstrate better corrosion resistance compared to SAES, in terms of substantially-lower corrosion current densities and higher corrosion potentials. This unexpected finding features the inherent corrosion resistance mechanisms of FSS in chlorinated environments alongside the superior passivation-oriented behavior in such an acidic medium and the potential for tailored microstructural engineering to optimize corrosion resistance. All in all, this research contributes to a deeper understanding of the complex relationship among microstructures and multi-faceted properties in FSS, with implications for the design of corrosion-resistant materials for the industrial applications, mainly solenoid valves and electrovalves.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Shahab Bazri_PhD_Thesis
Dimensione
67.39 MB
Formato
Adobe PDF
|
67.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/225192