This thesis presents the development of an AI-based fault classification system for industrial plants, specifically within the context of the electrical grid. The proposed model, built using convolutional neural networks (CNNs), was trained on synthetically generated datasets to classify various fault conditions with high accuracy. Despite demonstrating strong performance in a controlled environment, the model’s application to real-world data revealed limitations, primarily due to the presence of noise and disturbances not captured in the synthetic data. The study concludes that while the current model architecture is robust, retraining with real-world data is essential for improving its generalization and practical applicability. Future research directions include integrating real-world data, optimizing model performance, and exploring deployment in live industrial settings.
Questa tesi presenta lo sviluppo di un sistema di classificazione guasti tramite intelligenza artificiale per impianti industriali. Il modello proposto, basato su reti neurali (CNN), è stato addestrato su set di dati generati sinteticamente per classificare varie condizioni di guasto. Nonostante il modello abbia dimostrato elevate prestazioni in un ambiente sintetico, la sua applicazione su dati reali ha rivelato delle limitazioni, principalmente a causa della presenza di rumore e disturbi non catturati nei dati sintetici. Lo studio conclude che, sebbene l’architettura attuale del modello sia robusta, un allenamento con dati reali è essenziale per migliorarne la generalizzazione e l’applicabilità pratica. Le direzioni future della ricerca includono l’integrazione di dati reali, l’ottimizzazione delle prestazioni del modello e l’esplorazione del suo utilizzo in ambienti industriali reali.
AI-based fault classification software for industrial plants
Salmaso, Guido
2023/2024
Abstract
This thesis presents the development of an AI-based fault classification system for industrial plants, specifically within the context of the electrical grid. The proposed model, built using convolutional neural networks (CNNs), was trained on synthetically generated datasets to classify various fault conditions with high accuracy. Despite demonstrating strong performance in a controlled environment, the model’s application to real-world data revealed limitations, primarily due to the presence of noise and disturbances not captured in the synthetic data. The study concludes that while the current model architecture is robust, retraining with real-world data is essential for improving its generalization and practical applicability. Future research directions include integrating real-world data, optimizing model performance, and exploring deployment in live industrial settings.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Salmaso_Tesi.pdf
non accessibile
Descrizione: AI-based fault classification software for industrial plants
Dimensione
19.13 MB
Formato
Adobe PDF
|
19.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/225392