Over the last decades, significant efforts have been made to enhance the resilience of electric power systems. Resilience is defined as the ability to withstand and recover from High Impact Low Probability (HILP) events by anticipating, absorbing, adapting, and rapidly recovering. Various frameworks and methodologies for assessing power system resilience have been reviewed, using curve-based metrics like Energy Not Supplied (ENS) and the Value of Energy Not Supplied (VENS). Specifically, this master thesis focuses on the post-event restoration phase. The Restoration Ordering Problem (ROP) is analyzed, aiming to create effective restoration schedules that minimize post-event disruption. The ROP is crucial both operationally and prospectively, requiring system operators to prioritize repair and reconnection during HILP events to improve resilience assessment outcomes. This master thesis introduces a novel approach to solve the ROP using topological analysis. The proposed post-event parameters effectively characterize different failure configurations. Various topological measures are tested and compared on post-event configurations to build adaptive restoration strategies. Bottom-Up testing using IEEE power system cases validates the approach’s effectiveness, showing that a portfolio of strategies is more effective than a single optimal one. Then , the topological approach’s effectiveness in resilience assessment is validated through Top-Down testing, integrating it into traditional resilience analysis frameworks. The obtained results confirm the approach’s validity, showcasing reductions in expected metrics across various test cases. The topological approach not only reduces metric values but also provides justifications for the restoration order, contrasting with current random sequencing in resilience assessments, making it valuable for more realistic prospective analysis.
Negli ultimi decenni, sono stati compiuti notevoli sforzi per migliorare la resilienza dei sistemi elettrici. La resilienza è definita come la capacità di resistere e recuperare da eventi ad alto impatto e bassa probabilità (HILP) anticipando, assorbendo, adattandosi e recuperando rapidamente. Sono stati esaminati vari quadri e metodologie per valutare la resilienza dei sistemi elettrici, utilizzando metriche basate su curve come l’Energia Non Fornita (ENS) e il Valore dell’Energia Non Fornita (VENS). In particolare, questa tesi si concentra sulla fase di ripristino post-evento. Viene analizzato il problema della sequenza del ripristino (ROP), con l’obiettivo di creare programmi di ripristino efficaci che minimizzino i disagi post-evento. Il ROP è cruciale sia operativamente che prospetticamente, richiedendo agli operatori di sistema di dare priorità alla riparazione e alla riconnessione durante eventi HILP per migliorare i risultati della valutazione della resilienza. Questa tesi introduce un approccio innovativo per risolvere il ROP utilizzando l’analisi topologica. I parametri post-evento proposti caratterizzano efficacemente diverse configurazioni di guasto. Varie misure topologiche sono testate e confrontate su configurazioni post-evento per costruire strategie di ripristino adattive. I test Bottom-Up, utilizzando i casi di sistemi elettrici IEEE, convalidano l’efficacia dell’approccio, dimostrando che un portafoglio di strategie è più efficace di una singola strategia ottimale. Successivamente, l’efficacia dell’approccio topologico nella valutazione della resilienza viene validata attraverso test Top-Down, integrandolo nei quadri di analisi della resilienza tradizionali. I risultati ottenuti confermano la validità dell’approccio, mostrando riduzioni nelle metriche attese in vari casi di test. L’approccio topologico non solo riduce le metriche finali, ma fornisce anche giustificazioni per l’ordine di ripristino, in contrasto con la sequenza casuale utilizzata attualmente nelle valutazioni della resilienza, rendendolo prezioso per un’analisi prospettica più realistica.
Development of efficient restoration strategies for power system resilience enhancement
Buzzi, Samuele
2023/2024
Abstract
Over the last decades, significant efforts have been made to enhance the resilience of electric power systems. Resilience is defined as the ability to withstand and recover from High Impact Low Probability (HILP) events by anticipating, absorbing, adapting, and rapidly recovering. Various frameworks and methodologies for assessing power system resilience have been reviewed, using curve-based metrics like Energy Not Supplied (ENS) and the Value of Energy Not Supplied (VENS). Specifically, this master thesis focuses on the post-event restoration phase. The Restoration Ordering Problem (ROP) is analyzed, aiming to create effective restoration schedules that minimize post-event disruption. The ROP is crucial both operationally and prospectively, requiring system operators to prioritize repair and reconnection during HILP events to improve resilience assessment outcomes. This master thesis introduces a novel approach to solve the ROP using topological analysis. The proposed post-event parameters effectively characterize different failure configurations. Various topological measures are tested and compared on post-event configurations to build adaptive restoration strategies. Bottom-Up testing using IEEE power system cases validates the approach’s effectiveness, showing that a portfolio of strategies is more effective than a single optimal one. Then , the topological approach’s effectiveness in resilience assessment is validated through Top-Down testing, integrating it into traditional resilience analysis frameworks. The obtained results confirm the approach’s validity, showcasing reductions in expected metrics across various test cases. The topological approach not only reduces metric values but also provides justifications for the restoration order, contrasting with current random sequencing in resilience assessments, making it valuable for more realistic prospective analysis.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Buzzi_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
2024_10_Buzzi_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
8.41 MB
Formato
Adobe PDF
|
8.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/225492