The discovery of exoplanets has ignited a scientific quest to identify Earth-like worlds capable of sustaining life. Central to this pursuit is the detection of liquid water, which requires sophisticated remote sensing techniques, given current technological limitations. This thesis introduces Landscape Unveiling and Mapping from Orbiting Objects and Neighboring bodies (LUMOON), a versatile tool designed to simulate Earth observations from the Moon, aiding in the calibration of LOUPE, a spectropolarimeter intended to study Earth as if it were an exoplanet. LUMOON integrates realistic models of cloud cover, sea-ice, and wind speed at sea level to generate detailed simulations of Earth’s appearance from various celestial points of view, including spacecraft, the Moon, and other Solar System bodies. The program is able to compute parameters as glint reflectance, surface-water-cloud coverage and the phase angle. The functional modules of LUMOON are listed and described. Through these simulations, the thesis analyses the optimal time step for the measurements, the influence of the realistic data and the variations of the glint throughout the year. Moreover, it determines the optimal observer locations and observation periods on the Moon for LOUPE. This analysis identifies the most suitable time frame and site on the Moon for LOUPE’s observations, ensuring optimal conditions for the mission. This work aims at providing a useful tool to understand which section of the Earth is observed and at proposing the optimal period and lunar location for LOUPE. To sum up, LUMOON and the work in this thesis answers the question: What is the optimal observer location and time slot for observing the Earth as an exoplanet with a spectropolarimeter from the Moon?
La scoperta degli esopianeti ha avviato una ricerca scientifica per identificare mondi simili alla Terra, capaci di sostenere la vita. Centrale in questa ricerca è la rilevazione dell’acqua liquida, che richiede tecniche di rilevamento avanzate, considerando le limitazioni tecnologiche attuali. Questa tesi introduce Landscape Unveiling and Mapping from Orbiting Objects and Neighboring bodies (LUMOON), uno strumento versatile progettato per simulare le osservazioni della Terra dalla Luna, supportando la calibrazione di LOUPE, uno spettropolarimetro destinato a studiare la Terra come se fosse un esopianeta. LUMOON integra modelli realistici di copertura nuvolosa, copertura di ghiaccio marino e velocità del vento al livello del mare per generare simulazioni dettagliate dell’aspetto della Terra da vari punti di osservazione celesti, inclusi veicoli spaziali, la Luna e altri corpi del Sistema Solare. Il programma è in grado di calcolare parametri come la riflettanza del Sole, la percentuale di copertura superficiale di terra, acqua e nuvole, e l’angolo di fase. I moduli funzionali di LUMOON sono elencati e descritti. Attraverso queste simulazioni, la tesi analizza l’intervallo di tempo ottimale per le misurazioni, l’influenza dei dati realistici e le variazioni del glint durante l’anno. Inoltre, determina le posizioni ottimali degli osservatori e i periodi di osservazione sulla Luna per LOUPE. Questa analisi identifica il periodo e il sito più adatti sulla Luna per le osservazioni di LOUPE, garantendo condizioni ottimali per la missione. Questo lavoro ha l’obiettivo di fornire uno strumento utile per comprendere quale sezione della Terra viene osservata e di proporre il periodo e la posizione lunare ottimali per LOUPE. In sintesi, LUMOON e il lavoro in questa tesi rispondono alla domanda: Qual è la posizione dell’osservatore e la finestra temporale ottimali per osservare la Terra come un esopianeta con uno spettropolarimetro dalla Luna?
LUMOON - What is the optimal observer location and time slot for observing the Earth as an exoplanet with a spectropolarimeter from the Moon?
CAGNONI, AURORA
2023/2024
Abstract
The discovery of exoplanets has ignited a scientific quest to identify Earth-like worlds capable of sustaining life. Central to this pursuit is the detection of liquid water, which requires sophisticated remote sensing techniques, given current technological limitations. This thesis introduces Landscape Unveiling and Mapping from Orbiting Objects and Neighboring bodies (LUMOON), a versatile tool designed to simulate Earth observations from the Moon, aiding in the calibration of LOUPE, a spectropolarimeter intended to study Earth as if it were an exoplanet. LUMOON integrates realistic models of cloud cover, sea-ice, and wind speed at sea level to generate detailed simulations of Earth’s appearance from various celestial points of view, including spacecraft, the Moon, and other Solar System bodies. The program is able to compute parameters as glint reflectance, surface-water-cloud coverage and the phase angle. The functional modules of LUMOON are listed and described. Through these simulations, the thesis analyses the optimal time step for the measurements, the influence of the realistic data and the variations of the glint throughout the year. Moreover, it determines the optimal observer locations and observation periods on the Moon for LOUPE. This analysis identifies the most suitable time frame and site on the Moon for LOUPE’s observations, ensuring optimal conditions for the mission. This work aims at providing a useful tool to understand which section of the Earth is observed and at proposing the optimal period and lunar location for LOUPE. To sum up, LUMOON and the work in this thesis answers the question: What is the optimal observer location and time slot for observing the Earth as an exoplanet with a spectropolarimeter from the Moon?File | Dimensione | Formato | |
---|---|---|---|
2024_10_Cagnoni.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
145.6 MB
Formato
Adobe PDF
|
145.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226073