The need to develop sustainable mobility solutions has sparked and strengthened the interest in electric vertical take-off and landing (eVTOL) aircraft, offering them as an efficient, safe, and quiet solution for the navigation between urban areas and airport hubs. The objective of this master’s thesis is to address the unique challenges posed by the aerodynamics and aeroacoustics of these vehicles, by means of a multi-fidelity and multi-disciplinary analysis of the potential and viscous interactions between rotors in hovering conditions. In this work, the trade-off space between performance and noise footprint of co-rotating coaxial propellers has been experimentally investigated within a test domain defined by the degrees of freedom of the problem, namely the axial distance z and the phase angle between the rotors ϕ. Known relationships between propulsive efficiency and noise generation from the literature were retrieved, and new correlations were explored: significant variations of the tonal and broadband components of the acoustic footprint of such propulsion systems were traced back to the highly polarized behavior of the aerodynamic loads within the test domain. Specifically, it was confirmed that configurations of maximum aerodynamic efficiency are associated with reduced broadband noise, while the link between efficiency and tonal noise depends on the predominant type of interaction between rotors for the specific (ϕ, z) configuration analyzed. With a view toward the development of a digital twin of the propulsion system, a combined use of numerical tools was proposed to replicate the experimental results by simulating the aerodynamic loads and, subsequently, the tonal noise generated by them. The results were critically evaluated in light of the physical models employed in the numerical tools, highlighting a potential diagnostic use of the latter to verify the experimental test conditions.
La necessità di sviluppare soluzioni di mobilità sostenibile ha acceso e consolidato l’interesse verso i velivoli elettrici a decollo ed atterraggio verticale (eVTOL), offrendoli come soluzione efficiente, sicura e silenziosa per la navigazione tra spazi urbani e hub aeroportuali. Questa tesi magistrale si propone di rispondere alle sfide uniche poste dell’aerodinamica e dell’aeroacustica di questi velivoli tramite un’analisi multi-fedeltà e multi-disciplinare delle interazioni di tipo potenziale e viscoso tra rotori, al netto di effetti di volo. Lo spazio di compromesso tra le prestazioni e l’impatto sonoro di eliche coassiali co-rotanti è stato indagato sperimentalmente all’interno del dominio di test definito dai gradi di libertà del problema, rispettamente la distanza assiale z e l’angolo di sfasamento tra i rotori ϕ. Le relazioni tra efficienza propulsiva e generazione di rumore già note in letteratura sono state riottenute, e nuove relazioni sono state indagate: significative variazioni delle componenti tonale e a banda larga dell’impronta sonora dei sistemi propulsivi sono state ricondotte al comportamento fortemente polarizzato dei carichi aerodinamici all’interno del dominio di test. In particolare, è stato confermato come le configurazioni di massima efficienza aerodinamica siano associate ad un rumore a banda larga ridotto, mentre il legame tra efficienza e rumore tonale dipenda al tipo prevalente di interazione tra rotori per la specifica configurazione (ϕ, z) analizzata. Nell’ottica dello sviluppo di un gemello virtuale del sistema propulsivo, un utilizzo combinato di metodi numerici è stato proposto per riottenere i risultati trovati sperimentalmente, simulando i carichi aerodinamici e, a cascata, il rumore tonale derivante da essi. I risultati emersi sono stati letti criticamente alla luce dei modelli fisici impiegati nei metodi numerici, facendo emergere un possibile utilizzo diagnostico di questi ultimi per vagliare le condizioni sperimentali di test.
Aerodynamics and aeroacoustics of coaxial co-rotating propellers
BENI, ANDREA
2023/2024
Abstract
The need to develop sustainable mobility solutions has sparked and strengthened the interest in electric vertical take-off and landing (eVTOL) aircraft, offering them as an efficient, safe, and quiet solution for the navigation between urban areas and airport hubs. The objective of this master’s thesis is to address the unique challenges posed by the aerodynamics and aeroacoustics of these vehicles, by means of a multi-fidelity and multi-disciplinary analysis of the potential and viscous interactions between rotors in hovering conditions. In this work, the trade-off space between performance and noise footprint of co-rotating coaxial propellers has been experimentally investigated within a test domain defined by the degrees of freedom of the problem, namely the axial distance z and the phase angle between the rotors ϕ. Known relationships between propulsive efficiency and noise generation from the literature were retrieved, and new correlations were explored: significant variations of the tonal and broadband components of the acoustic footprint of such propulsion systems were traced back to the highly polarized behavior of the aerodynamic loads within the test domain. Specifically, it was confirmed that configurations of maximum aerodynamic efficiency are associated with reduced broadband noise, while the link between efficiency and tonal noise depends on the predominant type of interaction between rotors for the specific (ϕ, z) configuration analyzed. With a view toward the development of a digital twin of the propulsion system, a combined use of numerical tools was proposed to replicate the experimental results by simulating the aerodynamic loads and, subsequently, the tonal noise generated by them. The results were critically evaluated in light of the physical models employed in the numerical tools, highlighting a potential diagnostic use of the latter to verify the experimental test conditions.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Beni_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi definitiva
Dimensione
24.61 MB
Formato
Adobe PDF
|
24.61 MB | Adobe PDF | Visualizza/Apri |
2024_10_Beni_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary definitivo
Dimensione
688.28 kB
Formato
Adobe PDF
|
688.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226414