Nuclear energy faces a significant hurdle in providing safe and low-carbon energy: managing radioactive waste. An efficient and specific americium separation could bring us closer to this goal. However, the task is daunting due to the chemical and physical similarities between americium and curium, making their separation difficult. At present, the primary method for treating nuclear waste separates plutonium and uranium for reuse as new nuclear fuel but does little to reduce radiotoxicity or maximize the use of residual waste. The AmSel process (Americium Selective Extraction) aims to change this. It is an experimental reprocessing cycle based on removal of Am(III) from PUREX raffinate via liquid-liquid extraction. The main objective of this thesis is to enhance the AmSel process by replacing sulfonated BTBP with a new hydrophilic extractant. This novel ligand must be completely burnable at the end of its useful life, composed only of Carbon, Hydrogen, Oxygen, and Nitrogen, while also selectively extracting Am(III) from PUREX raffinate. The present thesis focuses first on the synthesis of various ligand options and then on liquid-liquid extraction tests. The experimental work optimizes the synthesis procedure, highlighting critical steps and obtaining a well-soluble compound in the acidic aqueous solutions of interest. Furthermore, the extracting properties will be tested through batch liquid-liquid extraction spiked with 241Am, 244Cm, and 152Eu, representing the elements present in spent fuel. The complexing agent is dissolved in the spiked aqueous phase and contacted with the organic phase containing TODGA, a lipophilic ligand that prefers Cm over Am. Various concentrations of ligands and acidity levels of the aqueous phases were tested to determine the optimal working condition. The collected experimental results are promising, indicating the potential for further improvement of the AmSel process by investigating the behavior of the proposed ligands in more detail. The experimental work demonstrates that Ethoxyethanol-BTzBP and Ethoxy(ethoxy)ethanol-BTzPhen are a promising alternative to the reference SO3-Ph-BTBP molecule currently used in the AmSel process.
Una delle sfide principali del settore nucleare per garantire un'energia a basse emissioni di CO2 è la gestione delle scorie radioattive prodotte dagli impianti. Una possibile soluzione che potrebbe migliorare notevolmente il trattamento del combustibile esausto è la separazione specifica dell'americio. Purtroppo, questa operazione è complessa a causa delle similitudini chimiche e fisiche tra l'americio e il curio, rendendo necessario lo sviluppo di un metodo di separazione specifico. Attualmente, il processo più consolidato per il trattamento delle scorie nucleari è in grado di separare solo uranio e plutonio, senza ridurre la radiotossicità di ciò che rimane come waste. Per questo motivo, il processo AmSel (Americium Selective Extraction) è stato introdotto come ciclo di riprocessamento avanzato al fine di rimuovere l'Am(III) dal raffinato PUREX, agendo quindi sull’abbattimento della radiotossicità. La modalità sfrutta la diversa selettività per l'americio dei composti chelanti in fase di estrazione liquido-liquido: il TODGA per la fase organica e la BTBP solfonata per la fase acquosa. L'obiettivo principale di questo lavoro di tesi è migliorare il processo AmSel sostituendo la BTBP solfonata con un nuovo legante idrofilo. Questo nuovo legante deve essere completamente inceneribile e composto solo da carbonio, idrogeno, ossigeno e azoto (principio CHON), oltre a mostrare capacità estraenti adeguate per l'americio. Il lavoro di tesi si concentra, quindi, sulla sintesi e sul test di questi chelanti alternativi: etossietanol/propandiol-BTzBP, etossi(etossi)etanol-BTzBPhen e propandiol-BTzBNaph. Successivamente l'ottimizzazione della sintesi e la valutazione delle proprietà estraenti vengono effettuate attraverso prove batch di contatto liquido-liquido. I traccianti 241Am, 244Cm e 152Eu vengono utilizzati per valutare l'affinità del chelante con l'americio rispetto al curio. Le condizioni ottimali di lavoro trovate risultano più restrittive rispetto a quelle del processo AmSel attuale, ma consentono comunque la separazione dell'americio dal curio. L'etossietanol-BTzBP e l’etossi(etossi)etanol-BTzBPhen si rivelano una promettente alternativa al SO3-Ph-BTBP, con ulteriori studi pianificati per comprendere appieno il nuovo sistema estraente.
Innovative hydrophilic ligands for the selective recovery of Am(III) from spent nuclear fuel
DI MATTEO, LETIZIA
2023/2024
Abstract
Nuclear energy faces a significant hurdle in providing safe and low-carbon energy: managing radioactive waste. An efficient and specific americium separation could bring us closer to this goal. However, the task is daunting due to the chemical and physical similarities between americium and curium, making their separation difficult. At present, the primary method for treating nuclear waste separates plutonium and uranium for reuse as new nuclear fuel but does little to reduce radiotoxicity or maximize the use of residual waste. The AmSel process (Americium Selective Extraction) aims to change this. It is an experimental reprocessing cycle based on removal of Am(III) from PUREX raffinate via liquid-liquid extraction. The main objective of this thesis is to enhance the AmSel process by replacing sulfonated BTBP with a new hydrophilic extractant. This novel ligand must be completely burnable at the end of its useful life, composed only of Carbon, Hydrogen, Oxygen, and Nitrogen, while also selectively extracting Am(III) from PUREX raffinate. The present thesis focuses first on the synthesis of various ligand options and then on liquid-liquid extraction tests. The experimental work optimizes the synthesis procedure, highlighting critical steps and obtaining a well-soluble compound in the acidic aqueous solutions of interest. Furthermore, the extracting properties will be tested through batch liquid-liquid extraction spiked with 241Am, 244Cm, and 152Eu, representing the elements present in spent fuel. The complexing agent is dissolved in the spiked aqueous phase and contacted with the organic phase containing TODGA, a lipophilic ligand that prefers Cm over Am. Various concentrations of ligands and acidity levels of the aqueous phases were tested to determine the optimal working condition. The collected experimental results are promising, indicating the potential for further improvement of the AmSel process by investigating the behavior of the proposed ligands in more detail. The experimental work demonstrates that Ethoxyethanol-BTzBP and Ethoxy(ethoxy)ethanol-BTzPhen are a promising alternative to the reference SO3-Ph-BTBP molecule currently used in the AmSel process.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Di Matteo_Tesi_01.pdf
non accessibile
Dimensione
3.97 MB
Formato
Adobe PDF
|
3.97 MB | Adobe PDF | Visualizza/Apri |
2024_10_Di Matteo_Executive Summary_02.pdf
non accessibile
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226422