Exploring the wide world of High and Medium Entropy Alloys (H/MEAs), some preliminary research activities highlighted how the CoNiV alloys possess some peculiar mechanical properties. At room temperature, they can reach an Ultimate Tensile Strength (UTS) between 1000 MPa and 1350 MPa, with elongation at failure up to 50%. However, their astonishing mechanical properties are manifested at cryogenic temperatures, being able to increase their UTS and their strain at fracture up to 60%. In this thesis, a non-equimolar CoNiV alloy was used for realizing some specimens by means of an additive manufacturing technique called Laser Powder Bed Fusion (LPBF). A microstructure characterization in the as-built condition showed the presence of a Face Centred Cubic (FCC) crystalline structure. Cellular substructures were found in the as-built samples and in not solubilized ones. The same FCC matrix was found also in the heat-treated specimens, together with secondary phases like σ phase (an intermetallic Co-V compound) and FCC→σ+κ decomposition. The σ phase formation is due to the same principle giving to the CoNiV alloy its peculiar mechanical properties. The Severe Lattice Distortion makes the Vanadium (much bigger than Cobalt and Nickel) prone to segregation in order to decrease the material’s potential energy, relieving the lattice’s intrinsic deformation. However, both σ phase and FCC→σ+κ decomposition have shown to be remarkably brittle and, together with the presence of gas pores inside the material, they lead to an excessive reduction of elongation at failure. Their formation was discovered to be linked to the aging treatment at 700 °C. While in the solubilized samples the strain arrived up to 30.5%, in the ones aged at 700° C it stops at 0.28%. Hence, it was concluded that the solubilization treatment performed at 1000 °C for 60 minutes is the only one able to increase the mechanical properties of non-equimolar CoNiV alloy analysed in this thesis. The creation of gas porosities inside the material (as in the studied samples) is likely to happen in case of components manufactured by means of additive technologies; hence, the selection of a heat treatment able to make them less sensitive to the defects’ presence is fundamental if the total absence of discontinuities inside the material cannot be guaranteed.
Esplorando il vasto mondo delle leghe ad alta e media entropia (H/MEAs), alcune attività di ricerca preliminari hanno evidenziato come le leghe CoNiV posseggano peculiari proprietà meccaniche. A temperatura ambiente, esse sono in grado di raggiungere un carico unitario a rottura compreso tra 1000 MPa e 1350 MPa, con allungamenti a rottura fino al 50%. Le loro incredibili proprietà meccaniche si manifestano tuttavia nell’impiego a temperature criogeniche, essendo in grado di aumentare ulteriormente il loro carico ultimo a rottura e la deformazione a frattura fino al 60%. In questa tesi, una lega non equimolare CoNiV è stata utilizzata per realizzare vari provini tramite l’impego di una tecnologia additiva chiamata Laser Powder Bed Fusion (LPBF). Una caratterizzazione della microstruttura del materiale subito dopo la stampa ha rilevato la presenza di una struttura cristallografica Cubica a Facce Centrate (CFC). Delle sottostrutture cellulari sono state trovate nei campioni appena stampati ed in quelli non solubilizzati. La stessa matrice CFC è stata trovata anche nei provini sottoposti a trattamento termico, con l’aggiunta di fasi secondarie quali fase σ (un composto intermetallico Co-V) e decomposizione FCC→σ+κ. La formazione della fase σ è causa dello stesso principio che dona alla lega CoNiV le sue proprietà meccaniche uniche. La severa deformazione del reticolo cristallino (Severe Lattice Distortion), fa sì che il Vanadio (molto più grande di Cobalto e Nickel) tenda a segregare per diminuire l’energia potenziale del materiale, alleviando la deformazione intrinseca del reticolo. Tuttavia, sia la fase σ sia la decomposizione FCC→σ+κ si sono dimostrate molto fragili e, unite alla presenza di porosità da gas nel materiale, hanno portato ad una riduzione spropositata dell’allungamento a rottura. La loro formazione si è scoperta essere legata ai trattamenti di invecchiamento a 700 °C. Mentre nei provini solubilizzati la deformazione è arrivata a 30.5%, in quelli invecchiati a 700 °C essa si ferma a 0.28%. Si è dunque giunti alla conclusione che il trattamento di solubilizzazione a 1000 °C per 60 minuti è l’unico in grado di migliorare le proprietà meccaniche della lega CoNiV non equimolare analizzata in questa tesi. La creazione di porosità da gas nel materiale (come nei campioni studiati) è verosimile nel caso di componentistica realizzata tramite tecnologie additive; quindi, la selezione di un trattamento termico che sia in grado di renderli meno suscettibile ad una eventuale presenza di difetti è fondamentale nel caso in cui non si possa garantire la totale assenza di discontinuità all’interno del materiale.
Investigating the microstructure and mechanical properties of a new CoNiV alloy manufactured by LPBF
Galli, Andrea
2023/2024
Abstract
Exploring the wide world of High and Medium Entropy Alloys (H/MEAs), some preliminary research activities highlighted how the CoNiV alloys possess some peculiar mechanical properties. At room temperature, they can reach an Ultimate Tensile Strength (UTS) between 1000 MPa and 1350 MPa, with elongation at failure up to 50%. However, their astonishing mechanical properties are manifested at cryogenic temperatures, being able to increase their UTS and their strain at fracture up to 60%. In this thesis, a non-equimolar CoNiV alloy was used for realizing some specimens by means of an additive manufacturing technique called Laser Powder Bed Fusion (LPBF). A microstructure characterization in the as-built condition showed the presence of a Face Centred Cubic (FCC) crystalline structure. Cellular substructures were found in the as-built samples and in not solubilized ones. The same FCC matrix was found also in the heat-treated specimens, together with secondary phases like σ phase (an intermetallic Co-V compound) and FCC→σ+κ decomposition. The σ phase formation is due to the same principle giving to the CoNiV alloy its peculiar mechanical properties. The Severe Lattice Distortion makes the Vanadium (much bigger than Cobalt and Nickel) prone to segregation in order to decrease the material’s potential energy, relieving the lattice’s intrinsic deformation. However, both σ phase and FCC→σ+κ decomposition have shown to be remarkably brittle and, together with the presence of gas pores inside the material, they lead to an excessive reduction of elongation at failure. Their formation was discovered to be linked to the aging treatment at 700 °C. While in the solubilized samples the strain arrived up to 30.5%, in the ones aged at 700° C it stops at 0.28%. Hence, it was concluded that the solubilization treatment performed at 1000 °C for 60 minutes is the only one able to increase the mechanical properties of non-equimolar CoNiV alloy analysed in this thesis. The creation of gas porosities inside the material (as in the studied samples) is likely to happen in case of components manufactured by means of additive technologies; hence, the selection of a heat treatment able to make them less sensitive to the defects’ presence is fundamental if the total absence of discontinuities inside the material cannot be guaranteed.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Galli_Thesis.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
10.15 MB
Formato
Adobe PDF
|
10.15 MB | Adobe PDF | Visualizza/Apri |
2024_10_Galli_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226457