Time Domain Near Infrared Spectroscopy (TD-NIRS) is a technique that uses trains of light pulses to analyse the optical behaviour of biological tissues. The study of skeletal muscle metabolic activity, for example, is one of those fields in which TD-NIRS finds application. In fact, this technique makes it possible to measure the absolute value of the concentration of oxygenated and deoxygenated haemoglobin present in the muscle, thus differing from other technologies that only measure relative values. In this work, I will address the problem of determining the ability of the TD-NIRS and, specifically, the NirsBox device, to detect rapid changes in muscle oxygenation. This will be done by simulating the action of the NirsBox on various types of tissues with different combinations of optical parameters: starting with a homogenous muscle tissue, up to simulating a muscle covered with 2 $cm$ of fat. Various analytical methods (fitting and time gating) and different resolution approaches (single and double detector) will then be tested. Real measurements conducted with the NirsBox under conditions of fast changes in muscle saturation will finally be examined. A central point of this work will also be the comparison between the fit method and the time gating method. In fact, it will be seen how the former works particularly well only in the case of homogeneous (or quasi-homogeneous) media, while the latter has potential even in the presence of heterogeneous structures, although it does highlight a number of still not fully resolved criticalities. At the end of the work, it will be demonstrated (also thanks to the verification of experimentally collected data) how the NirsBox is actually able to detect the described variations, while the discussion regarding the correct application of the two solving methods will still remain partly open.
La Time Domain Near Infrared Spectroscopy (TD-NIRS) è una tecnica che utilizza treni di impulsi luminosi per analizzare il comportamento ottico dei tessuti biologici. Lo studio dell'attività metabolica del muscolo scheletrico, per esempio, è uno di quei campi in cui la TD-NIRS trova applicazione. Questa tecnica permette infatti di misurare il valore assoluto della concentrazione di emoglobina ossigenata e deossigenata presenti nel muscolo, differenziandosi quindi da altre tecnologie che invece ne misurano solo i valori relativi. In questo lavoro si affronterà il problema di determinare la capacità della TD-NIRS e, nello specifico, del dispositivo NirsBox, di rilevare variazioni veloci di ossigenazione muscolare. Questo avverrà simulando l'azione della NirsBox su varie tipologie di tessuti con diverse combinazioni di parametri ottici: si partirà da un tessuto muscolare omogeneo, fino ad arrivare a simulare un muscolo ricoperto da 2 $cm$ di grasso. Saranno quindi testati vari metodi analitici (quello del fitting e quello del time gating) e diversi approcci risolutivi (a singolo e a doppio detector). Delle misure realmente condotte con la NirsBox in condizioni di variazioni veloci della saturazione muscolare saranno infine analizzate. Punto centrale di questo lavoro sarà anche il confronto tra il metodo del fit e quello del time gating. Si vedrà infatti come il primo funzioni particolarmente bene solo nel caso di mezzi omogenei (o quasi omogenei), mentre il secondo presenta delle potenzialità anche in presenza di strutture eterogenee, pur evidenziando una serie di criticità ancora non del tutto risolte. Alla fine del lavoro, si dimostrerà (anche grazie alla verifica dei dati raccolti sperimentalmente) come la NirsBox sia effettivamente in grado di rilevare le variazioni descritte, mentre la discussione riguardo alla corretta applicazione dei due metodi risolutivi resterà ancora in parte aperta.
Time domain near infrared spectroscopy for the detection of rapid changes in skeletal muscle oxygenation
GORGONE, GIOELE
2023/2024
Abstract
Time Domain Near Infrared Spectroscopy (TD-NIRS) is a technique that uses trains of light pulses to analyse the optical behaviour of biological tissues. The study of skeletal muscle metabolic activity, for example, is one of those fields in which TD-NIRS finds application. In fact, this technique makes it possible to measure the absolute value of the concentration of oxygenated and deoxygenated haemoglobin present in the muscle, thus differing from other technologies that only measure relative values. In this work, I will address the problem of determining the ability of the TD-NIRS and, specifically, the NirsBox device, to detect rapid changes in muscle oxygenation. This will be done by simulating the action of the NirsBox on various types of tissues with different combinations of optical parameters: starting with a homogenous muscle tissue, up to simulating a muscle covered with 2 $cm$ of fat. Various analytical methods (fitting and time gating) and different resolution approaches (single and double detector) will then be tested. Real measurements conducted with the NirsBox under conditions of fast changes in muscle saturation will finally be examined. A central point of this work will also be the comparison between the fit method and the time gating method. In fact, it will be seen how the former works particularly well only in the case of homogeneous (or quasi-homogeneous) media, while the latter has potential even in the presence of heterogeneous structures, although it does highlight a number of still not fully resolved criticalities. At the end of the work, it will be demonstrated (also thanks to the verification of experimentally collected data) how the NirsBox is actually able to detect the described variations, while the discussion regarding the correct application of the two solving methods will still remain partly open.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Gorgone_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della Tesi
Dimensione
9.01 MB
Formato
Adobe PDF
|
9.01 MB | Adobe PDF | Visualizza/Apri |
2024_10_Gorgone_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226482