Hydrogen is growing in importance, due to its versatility and negligible impact with respect to fossil fuels. But to work properly with it, it is necessary to fully understand its characteristics and reactivity. One of the main issues in hydrogen combustion is the dependence on pressure, which cannot be described by using the Arrhenius equation to express the rate constant. In addition, also the choice of the mixture rules used to describe the impact of the interaction between molecules on the rate constant value plays a significant role. The state of art for the pressure-dependent reactions is the use of Troe's formulation or, more simply, by assuming direct proportionality to the concentration of surrounding molecules, and thus in the ideal gas limit to the pressure. These techniques do not correctly describe the dependence of pressure nor the influence of different bath gases on the rate of reactions operating in regimes where collisional stabilization is important. The aim of this thesis project is to develop a new rate constant formulation, taking into account different pressure levels and different colliders, to be able to describe every possible situation with greater precision. This new formulation is based on the accurate determination of rate constants through theoretically consistent approaches determining the collisional parameters through fitting of experimental rate constants values, found through an extensive literature research of rate constant measurements for specific steps in hydrogen combustion, at different temperatures and pressure, and with different colliders. The adopted approach relies on the solution of the master equation, which describes the population density of molecules at different energy levels. The new kinetic mechanism describes the reaction system similarly, but not equally, to the reference CRECK mechanism when simple cases are considered, such as pure collider and mild conditions of temperature and pressure, ensuring that the proposed approach was correct. However, more notable differences are observed in specific operating conditions, revealing the impact of the newly estimated rate constants. Further investigation would help to achieve a more accurate description of the reactivity in all conditions, both for the hydrogen and for other fuels that depend on hydrogen.
L'importanza dell'idrogeno è in continua crescita, a causa della sua versatilità e basso impatto ambientale rispetto ai combustibili di origine fossile. Ma per poterlo trattare correttamente, è necessario comprendere pienamente le sue caratteristiche e la sua reattività. Uno dei maggiori problemi nella combustione di idrogeno è la dipendenza dalla pressione, che non può essere descritta tramite l'equazione di Arrhenius. In aggiunta, anche la scelta delle regole di miscelazione, che descrivono l'interazione tra le molecole, gioca un ruolo fondamentale. Lo stato dell'arte prevede la descrizione delle reazioni dipendenti dalla pressone tramite l'uso della formulazione di Troe, oppure trattando la pressione come la concentrazione delle molecole circostanti. Questa tecnica non permette una descrizione accurata né della dipendenza dalla pressione, né dell'effetto dei diversi terzi corpi nella reazione. Lo scopo di questa tesi è di sviluppare una nuova formulazione per le costanti cinetiche, tenendo in considerazione diversi livelli di pressione e terzi corpi, così da poter descrivere ogni situazione con un'elevata accuratezza. La nuova formulazione parte dalla ricerca in letteratura di misure sperimentali per specifici passaggi nella reazione di combustione di idrogeno, a differenti pressioni, temperature e terzi corpi. Successivamente, i dati vengono utilizzati per risolvere la master equation, che descrive la densità di popolazione di molecole con uno specifico livello di energia, e ottenendo alla fine una matrice di costanti cinetiche a differenti pressioni e temperature per ogni terzo corpo e passaggio della reazione. Il nuovo meccanismo cinetico produce risultati simili all'originale quando si lavora in casi semplici, come singoli collider o condizioni di temperatura e pressione intermedie. Si può quindi supporre che l'approccio e le intuizioni fossero corrette. Tuttavia, è necessario un continuo sviluppo per poter giungere a descrizioni più accurate della reattività, sia per l'idrogeno stesso, sia per altri combustibili che si basano sull'idrogeno.
Reconciling theory, experiments and gas-phase kinetic models. A case study on rigorous implementation of pressure dependent reactions in hydrogen combustion.
LEA CASAGRANDE, MATTEO
2023/2024
Abstract
Hydrogen is growing in importance, due to its versatility and negligible impact with respect to fossil fuels. But to work properly with it, it is necessary to fully understand its characteristics and reactivity. One of the main issues in hydrogen combustion is the dependence on pressure, which cannot be described by using the Arrhenius equation to express the rate constant. In addition, also the choice of the mixture rules used to describe the impact of the interaction between molecules on the rate constant value plays a significant role. The state of art for the pressure-dependent reactions is the use of Troe's formulation or, more simply, by assuming direct proportionality to the concentration of surrounding molecules, and thus in the ideal gas limit to the pressure. These techniques do not correctly describe the dependence of pressure nor the influence of different bath gases on the rate of reactions operating in regimes where collisional stabilization is important. The aim of this thesis project is to develop a new rate constant formulation, taking into account different pressure levels and different colliders, to be able to describe every possible situation with greater precision. This new formulation is based on the accurate determination of rate constants through theoretically consistent approaches determining the collisional parameters through fitting of experimental rate constants values, found through an extensive literature research of rate constant measurements for specific steps in hydrogen combustion, at different temperatures and pressure, and with different colliders. The adopted approach relies on the solution of the master equation, which describes the population density of molecules at different energy levels. The new kinetic mechanism describes the reaction system similarly, but not equally, to the reference CRECK mechanism when simple cases are considered, such as pure collider and mild conditions of temperature and pressure, ensuring that the proposed approach was correct. However, more notable differences are observed in specific operating conditions, revealing the impact of the newly estimated rate constants. Further investigation would help to achieve a more accurate description of the reactivity in all conditions, both for the hydrogen and for other fuels that depend on hydrogen.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Lea Casagrande_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
2024_10_Lea Casagrande_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
8.43 MB
Formato
Adobe PDF
|
8.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226533