This study aims to develop an optimization model for the biofuel supply chain, with a specific emphasis on transportation logistics. The model is divided into two main phases, each targeting a distinct objective. In the first phase, the model determines the optimal locations for biofuel conversion facilities across various European regions, considering the biomass distribution along territory and the proximity of eligible biofuel users. Furthermore, different biomass types, conversion technologies, and produceable biofuel types are considered in this analysis. For what concern the transportationanalysis, this phase considers two truck types: one for biomass transport and one for fuel transport. The transportation cost is proportional to a single value expressed in [€/ton/km], based on the quantity of biomass or biofuel transported and the travelled distance. The goal is to minimize the total production costs while maximizing the net revenues of the supply chain. In the second phase, the model focuses on identifying the most suitable transportation modes for collecting and transporting biomass to these conversion facilities. This analysis compares various transportation options, including different truck types and trains, to identify the most cost-effective solution. Here, the analysis incorporates multiple components of transportation costs, such as fuel, driver wages, investment, and maintenance costs for trucks, while for trains a service-related cost is considered. The study underscores the crucial role of efficient and effective logistics in the biofuel supply chain, highlighting that improved logistics not only reduces costs but also enhances the environmental sustainability of biofuel production. By minimizing logistical inefficiencies, the supply chain can lower the carbon footprint associated with fuel production and distribution, making biofuels a more viable alternative to fossil fuels. This is essential for reducing greenhouse gas emissions, particularly CO2, as optimizing the supply chain supports the broader goal of mitigating climate change. Since the net CO2 emissions from biofuel combustion are neutral, it is essential to make biofuels a key component of the world's future energy mix. Improving logistics could further amplify the environmental benefits of biofuel: by reducing production and distribution costs, biofuels could be more affordable and enable their use on a much larger scale.
Questo studio ha l'obiettivo di sviluppare un modello di ottimizzazione per la catena di approvvigionamento dei biocarburanti, concentrandosi sulla logistica dei trasporti. Il modello è diviso in due fasi principali, ciascuna delle quali ha un obiettivo distinto. Nella prima fase, il modello determina le posizioni ottimali per gli impianti di conversione dei biocarburanti in diverse regioni europee, considerando la distribuzione della biomassa sul territorio e la vicinanza dei siti ad utilizzatori di biocarburante. In questa fase vengono presi in considerazione diversi tipi di biomassa, tecnologie di conversione e tipi di biocarburanti prodotti. Per quanto riguarda l'analisi del trasporto, questa fase considera due tipi di camion: uno per il trasporto della biomassa e uno per il trasporto del carburante. Il costo del trasporto è proporzionale a un valore unico espresso in [€/ton/km], ed il valore finale è dato dalla quantità di biomassa e biocarburante trasportati e dalla distanza percorsa. L'obiettivo è minimizzare i costi totali di produzione, massimizzando i ricavi netti. Nella seconda fase, il modello si concentra sull'identificazione delle modalità di trasporto più adatte per la raccolta e il trasporto della biomassa verso gli impianti di conversione. Questa analisi confronta varie opzioni di trasporto, tra cui diversi tipi di camion e treno, per identificare la soluzione più conveniente. In questa fase, vengono presi in considerazione molteplici componenti dei costi di trasporto, come il costo del carburante, i salari dei conducenti e i costi di investimento e di manutenzione per i camion, mentre per i treni viene considerato un costo legato al servizio. Lo studio evidenzia l'importanza di una gestione ottimizzata della logistica nella catena di approvvigionamento dei biocarburanti: una logistica efficiente non solo riduce i costi, ma aumenta anche la sostenibilità ambientale della produzione di biocarburanti. Ottimizzando la logistica, si può diminuire l'impronta di carbonio associata alla produzione e distribuzione dei biocarburanti, rendendoli un'alternativa più sostenibile dei combustibili fossili. Questo è cruciale per ridurre le emissioni di gas serra, in particolare di CO2, e per sostenere l'obiettivo di mitigare il cambiamento climatico. Poiché le emissioni nette di CO2 dalla combustione dei biocarburanti sono neutrali, migliorare la logistica potrebbe amplificare i benefici ambientali: infatti, potrebbe abbassare i costi di produzione e distribuzione e rendere i biocarburanti più accessibili, in modo che siano utilizzabili su scala più ampia.
A Mathematical Optimization Model for Biofuel Supply Chain: Analysis of a European Case Study
FALCONE, ALESSIA
2023/2024
Abstract
This study aims to develop an optimization model for the biofuel supply chain, with a specific emphasis on transportation logistics. The model is divided into two main phases, each targeting a distinct objective. In the first phase, the model determines the optimal locations for biofuel conversion facilities across various European regions, considering the biomass distribution along territory and the proximity of eligible biofuel users. Furthermore, different biomass types, conversion technologies, and produceable biofuel types are considered in this analysis. For what concern the transportationanalysis, this phase considers two truck types: one for biomass transport and one for fuel transport. The transportation cost is proportional to a single value expressed in [€/ton/km], based on the quantity of biomass or biofuel transported and the travelled distance. The goal is to minimize the total production costs while maximizing the net revenues of the supply chain. In the second phase, the model focuses on identifying the most suitable transportation modes for collecting and transporting biomass to these conversion facilities. This analysis compares various transportation options, including different truck types and trains, to identify the most cost-effective solution. Here, the analysis incorporates multiple components of transportation costs, such as fuel, driver wages, investment, and maintenance costs for trucks, while for trains a service-related cost is considered. The study underscores the crucial role of efficient and effective logistics in the biofuel supply chain, highlighting that improved logistics not only reduces costs but also enhances the environmental sustainability of biofuel production. By minimizing logistical inefficiencies, the supply chain can lower the carbon footprint associated with fuel production and distribution, making biofuels a more viable alternative to fossil fuels. This is essential for reducing greenhouse gas emissions, particularly CO2, as optimizing the supply chain supports the broader goal of mitigating climate change. Since the net CO2 emissions from biofuel combustion are neutral, it is essential to make biofuels a key component of the world's future energy mix. Improving logistics could further amplify the environmental benefits of biofuel: by reducing production and distribution costs, biofuels could be more affordable and enable their use on a much larger scale.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Falcone_Alessia.pdf
accessibile in internet per tutti a partire dal 18/09/2025
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Falcone_Alessia.pdf
accessibile in internet per tutti a partire dal 18/09/2025
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226657