The growing interest in carbon-free fuels positions green hydrogen (H2) as a promising alternative. However, its high reactivity, diffusivity, and wide flammability range pose challenges in existing technological frameworks. Blending H2 with methane (CH4) has become a common strategy to support decarbonisation. Nevertheless, under the aforementioned conditions, H2 demonstrates its preferential diffusion behavior, resulting in the emergence of thermo-diffusive (TDIs) and hydrodynamic instabilities in premixed flames. In this work, 3D direct numerical simulations (DNS) of a laminar Bunsen burner, fed with different mixtures of CH4 and H2 have been carried out to study the formation and the features of thermo-diffusive instabilities (TDIs). The simulations have been successfully validated through experimental Raman measurements. Furthermore, 2D disk simulations have been carried out to study the dynamic development and the average features in time of TDIs. The results provide a detailed analysis of local quantities, and flame characteristics including curvature, and stretch rate. The corrugated shape of the reactive front is influenced by the H2/CH4 ratio, that results in highly reactive convex zones (troughs) and concave convective zones (cusps) along the front. Notably, this study reveals linear relationships of flame curvature with key variables of the flame front, suggesting potential avenues to consistently simplify future simulations of Bunsen flames. In addition, disk simulations demonstrate wave-like behavior when perturbed, unveiling an enhanced response to cell lengths similar or equivalent to the critical cell length (λcrit) of the mixture. Future studies could delve deeper into this phenomenon to incorporate the traits of TDIs into large-scale models, aiming to maintain precision and circumvent the challenges of capturing small-scale dynamics. The time-averaged features of 2D cases present identical λcrit with respect to the experimental Bunsen flame data, fostering the idea that 2D simulations can be a useful tool to approximate with good accuracy the characteristics of the 3D flame structure, considerably reducing computational resources.
L’interesse crescente per i combustibili privi di carbonio posiziona l’idrogeno verde (H2) come una promettente alternativa. Tuttavia, la sua elevata reattività, diffusività e ampio range di infiammabilità pongono delle sfide nei framework tecnologici esistenti. La miscelazione di H2 con metano (CH4) è diventata una strategia comune per supportare la decarbonizzazione. Tuttavia, nelle condizioni sopra descritte, H2 dimostra il suo comportamento di diffusione preferenziale, portando all’emergere di instabilità termo-diffusive (TDI) e idrodinamiche in fiamme pre-miscelate. In questo lavoro, sono state eseguite simulazioni numeriche dirette tridimensionali (DNS) di un bruciatore Bunsen laminare, alimentato con diverse miscele di CH4 e H2, per studiare la formazione e le caratteristiche delle instabilità termo-diffusive (TDI). Le simulazioni sono state validate con successo tramite misurazioni sperimentali Raman. Inoltre, sono state eseguite simulazioni su disco bidimensionali per studiare lo sviluppo dinamico e le caratteristiche medie nel tempo delle TDI. I risultati forniscono un’analisi dettagliata delle quantità locali e delle caratteristiche della fiamma, inclusi la curvatura e il tasso di stiramento. La forma corrugata del fronte reattivo è influenzata dal rapporto H2/CH4, che porta a zone convesse molto reattive (avvallamenti) e zone convettive concave (cuspidi) lungo il fronte. È degno di nota che questo studio rivela relazioni lineari tra la curvatura della fiamma e variabili chiave del fronte di fiamma, suggerendo potenziali vie per semplificare in modo coerente future simulazioni di fiamme Bunsen. Inoltre, le simulazioni su disco dimostrano un comportamento ondulatorio quando perturbate, rivelando una risposta amplificata per lunghezze cellulari simili o equivalenti alla lunghezza critica della cella (λcrit) della miscela. Studi futuri potrebbero approfondire questo fenomeno per integrare i tratti dei TDIs in modelli su larga scala, con l’obiettivo di mantenere la precisione e aggirare le difficoltà di catturare dinamiche su piccola scala. Le caratteristiche medie nel tempo dei casi bidimensionali presentano una λcrit identica rispetto ai dati sperimentali della fiamma Bunsen, sostenendo l’idea che le simulazioni 2D possano essere uno strumento utile per approssimare con buona accuratezza le caratteristiche della struttura tridimensionale della fiamma, riducendo notevolmente le risorse computazionali.
Numerical study of thermo-diffusive instabilities in hydrogen-methane lean laminar premixed Bunsen flames
Somma, Andrea;Niccolai, Tommaso
2023/2024
Abstract
The growing interest in carbon-free fuels positions green hydrogen (H2) as a promising alternative. However, its high reactivity, diffusivity, and wide flammability range pose challenges in existing technological frameworks. Blending H2 with methane (CH4) has become a common strategy to support decarbonisation. Nevertheless, under the aforementioned conditions, H2 demonstrates its preferential diffusion behavior, resulting in the emergence of thermo-diffusive (TDIs) and hydrodynamic instabilities in premixed flames. In this work, 3D direct numerical simulations (DNS) of a laminar Bunsen burner, fed with different mixtures of CH4 and H2 have been carried out to study the formation and the features of thermo-diffusive instabilities (TDIs). The simulations have been successfully validated through experimental Raman measurements. Furthermore, 2D disk simulations have been carried out to study the dynamic development and the average features in time of TDIs. The results provide a detailed analysis of local quantities, and flame characteristics including curvature, and stretch rate. The corrugated shape of the reactive front is influenced by the H2/CH4 ratio, that results in highly reactive convex zones (troughs) and concave convective zones (cusps) along the front. Notably, this study reveals linear relationships of flame curvature with key variables of the flame front, suggesting potential avenues to consistently simplify future simulations of Bunsen flames. In addition, disk simulations demonstrate wave-like behavior when perturbed, unveiling an enhanced response to cell lengths similar or equivalent to the critical cell length (λcrit) of the mixture. Future studies could delve deeper into this phenomenon to incorporate the traits of TDIs into large-scale models, aiming to maintain precision and circumvent the challenges of capturing small-scale dynamics. The time-averaged features of 2D cases present identical λcrit with respect to the experimental Bunsen flame data, fostering the idea that 2D simulations can be a useful tool to approximate with good accuracy the characteristics of the 3D flame structure, considerably reducing computational resources.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Niccolai_Somma_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Testo executive summary
Dimensione
16.39 MB
Formato
Adobe PDF
|
16.39 MB | Adobe PDF | Visualizza/Apri |
2024_10_Niccolai_Somma_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
61.46 MB
Formato
Adobe PDF
|
61.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226789