Efforts towards a more sustainable energy supply and utilization are necessary to achieve the decarbonization targets set by European Union, aimed at tackling climate change. In this context, hydrogen can play a paramount role, thanks to its clean combustion and utilization as energy carrier. To match the increasing demand, efficient and less impactful hydrogen production processes must be developed. Currently, it is mainly obtained from fossil fuels through Steam Methane Reforming (SMR), a highly reliable technology at large scale, but also responsible for considerable greenhouse gas emissions. Downscaling SMR plants allows to employ renewable biogas as carbon feedstock and achieve a distributed and local hydrogen production. Nevertheless, to facilitate energy supply at lower flow rates, process intensification is necessary. In particular, the insertion of highly conductive internals and the electrification of heat supply allow to enhance the heat transfer phenomena, and thus the energy efficiency. The present thesis work focuses on a novel reactor configuration, developed by the LCCP group of the Politecnico di Milano, in which the reaction heat demand is provided through Joule effect. Heat distribution is enhanced by Cu open-cell foams or Periodic Open Cellular Structures (POCS) obtained by additive manufacturing, packed with spherical Rh/Al2O3 catalytic pellets. To allow hybrid operation, power can be supplied either from an external oven or from an internal resistive wire. This thesis presents some stationary experimental results with the purpose of testing different reactor configurations, further validating the mathematical model of the electrified system, and demonstrating the remarkable efficiency and flexibility of the process. From the experimental evidence it can be assessed that POCS allow for better heat distribution, leading to almost flat radial temperature profiles that justify the use of a 1D model to simplify dynamic process simulations. Some dynamic experimental tests are also presented to demonstrate the responsiveness of the system and the effectiveness of the temperature control configuration. In the perspective of scaling-up the eSMR plant, the 1D dynamic model integrated with the control action modeling is applied to simulate dynamic scenarios on the pilot scale reactor filled with POCS internals. This allows to confirm the reliability and swiftness of the response even at larger scale. The next scaling-up step is to move towards an industrial-scale multi-wire reactor. The 2D steady-state model can be applied to provide the preliminary design of this unit. This investigation allows to determine the effect of reactor geometry on design constraints like wire temperature and pressure drops.
Gli obiettivi di decarbonizzazione stabiliti dall’Unione Europea per affrontare il cambiamento climatico richiedono azioni atte a modificare l’attuale scenario energetico. In questo contesto, l'idrogeno svolge un ruolo fondamentale, grazie a una combustione pulita e ai suoi utilizzi come vettore energetico. Per soddisfarne la crescente domanda è necessario sviluppare processi di produzione a minor impatto ed elevata efficienza. Attualmente, l'idrogeno è prodotto principalmente da combustibili fossili, attraverso il processo di Steam Reforming (SR), una tecnologia molto affidabile su larga scala ma responsabile di notevoli emissioni di gas serra. Ridurre la scala degli impianti SR consente di impiegare biogas come materia prima e promuovere una produzione distribuita di idrogeno. Per fornire efficientemente il calore richiesto dalla reazione a portate inferiori, è però necessario intensificare il processo. In particolare, l’utilizzo di interni conduttivi e l'elettrificazione della fonte energetica consentono di migliorare il trasporto di calore, e così l'efficienza energetica. Il presente lavoro di tesi analizza una configurazione sviluppata dal gruppo LCCP del Politecnico di Milano, in cui la domanda energetica è sostenuta tramite effetto Joule. Il trasporto di calore è intensificato grazie a supporti solidi in rame (schiume o POCS), impaccati con pellet catalitici sferici in Rh/Al2O3. Per consentire un’operazione ibrida, l'energia può essere fornita sia da un forno esterno sia da un filo resistivo interno. In questa tesi vengono presentati alcuni risultati sperimentali a stazionario, con lo scopo di testare diverse configurazioni di reattore, validare ulteriormente il modello matematico del sistema elettrificato, e dimostrare l'efficienza e la flessibilità del processo. L'evidenza sperimentale consente di affermare che i POCS consentono una migliore distribuzione del calore, con profili di temperatura radiale quasi piatti che giustificano l'utilizzo di un modello 1D per semplificare le simulazioni dinamiche del processo. Sono inoltre presentati alcuni test sperimentali dinamici che dimostrano l’intrinseca reattività del sistema e l’efficacia del controllo di temperatura. In vista della realizzazione di un impianto scaled-up, il modello dinamico 1D integrato con l'azione di controllo è stato applicato per la simulazione di scenari dinamici sull'impianto pilota con riempimenti POCS, confermando l'affidabilità e la rapidità della risposta transitoria anche su scala maggiore. Il passo successivo del progetto sarà quello di proiettarsi verso un reattore di scala industriale multi-filo. A questo scopo, il modello 2D stazionario è stato applicato per eseguirne un design preliminare. Questa analisi permette di determinare l'effetto della geometria del reattore su vincoli progettuali come la temperatura di filo e le perdite di carico.
Electrified Biogas Reforming for Low-Carbon Hydrogen: from lab-scale experiments to scale-up modeling
Baroni, Lorenzo;DE LUCA, ARIANNA MARTINA
2023/2024
Abstract
Efforts towards a more sustainable energy supply and utilization are necessary to achieve the decarbonization targets set by European Union, aimed at tackling climate change. In this context, hydrogen can play a paramount role, thanks to its clean combustion and utilization as energy carrier. To match the increasing demand, efficient and less impactful hydrogen production processes must be developed. Currently, it is mainly obtained from fossil fuels through Steam Methane Reforming (SMR), a highly reliable technology at large scale, but also responsible for considerable greenhouse gas emissions. Downscaling SMR plants allows to employ renewable biogas as carbon feedstock and achieve a distributed and local hydrogen production. Nevertheless, to facilitate energy supply at lower flow rates, process intensification is necessary. In particular, the insertion of highly conductive internals and the electrification of heat supply allow to enhance the heat transfer phenomena, and thus the energy efficiency. The present thesis work focuses on a novel reactor configuration, developed by the LCCP group of the Politecnico di Milano, in which the reaction heat demand is provided through Joule effect. Heat distribution is enhanced by Cu open-cell foams or Periodic Open Cellular Structures (POCS) obtained by additive manufacturing, packed with spherical Rh/Al2O3 catalytic pellets. To allow hybrid operation, power can be supplied either from an external oven or from an internal resistive wire. This thesis presents some stationary experimental results with the purpose of testing different reactor configurations, further validating the mathematical model of the electrified system, and demonstrating the remarkable efficiency and flexibility of the process. From the experimental evidence it can be assessed that POCS allow for better heat distribution, leading to almost flat radial temperature profiles that justify the use of a 1D model to simplify dynamic process simulations. Some dynamic experimental tests are also presented to demonstrate the responsiveness of the system and the effectiveness of the temperature control configuration. In the perspective of scaling-up the eSMR plant, the 1D dynamic model integrated with the control action modeling is applied to simulate dynamic scenarios on the pilot scale reactor filled with POCS internals. This allows to confirm the reliability and swiftness of the response even at larger scale. The next scaling-up step is to move towards an industrial-scale multi-wire reactor. The 2D steady-state model can be applied to provide the preliminary design of this unit. This investigation allows to determine the effect of reactor geometry on design constraints like wire temperature and pressure drops.File | Dimensione | Formato | |
---|---|---|---|
Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Thesis.pdf
non accessibile
Descrizione: Electrified Biogas Reforming for Low-Carbon Hydrogen: from lab-scale experiments to scale-up modeling
Dimensione
8.08 MB
Formato
Adobe PDF
|
8.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226851