As the demand for optical communications payloads increases, telescopes which reach higher levels of opto-mechanical quality are needed. At the same time lightweight efficient structures are needed to reduce the mass and minimize launch costs. This thesis presents an integrated design process for opto-mechanical structures based on multidisciplinary optimization. Starting from a baseline telescope produced for laboratory tests, three ultra-lightweight telescopes are designed to reach real mission profile opto-mechanical requirements. Firstly, the best lightweighting method for the main mirror is selected, then the mirror core is designed through the implementation of an optimization algorithm to reach a target mass by maximizing the mirror stiffness. Then, three different secondary mirror support structures are designed. The lightweighting steps applied to the structures are selected by evaluating the effects on the telescope natural frequencies through modal analysis. Once the secondary structures are designed, structural and optical performance of the three telescope assemblies are evaluated. Structural performance has been studied trough eigenfrequencies and launch loads, evaluated through quasi-static analysis by defining different load cases. Finally, optical performance is evaluated through numerical simulations using root mean square wavefront error as evaluation parameter. An error budget has been defined to take into account manufacturing errors and deformations due to in-orbit loads. In Ansys Mechanical, deformations of optical surfaces and structures are calculated by applying gravitational and thermal loads. Then, Zernike polynomials coefficients are calculated from optical surface wavefront deformation data through a Matlab code. Using this multidisciplinary optimization design process, three telescope assemblies have been designed and one of them satisfies all the constraints.
Con l’aumento della richiesta di strumenti ottici, è necessario progettare telescopi che raggiungano alti livelli di qualità ottica e meccanica. Allo stesso tempo, strutture leggere ed efficienti sono necessarie per ridurre la massa ed i costi di lancio. Il seguente lavoro di tesi, presenta un processo di progettazione di strutture ottico-meccaniche basato su un’ottimizzazione multidisciplinare. Partendo da un telescopio da laboratorio, sono stati progettati tre telescopi ultra leggeri seguendo requisiti imposti per simulare una missione reale. Per iniziare è stato studiato il miglior metodo per alleggerire lo specchio principale, successivamente la struttura interna dello specchio è stata progettata tramite un algoritmo di ottimizzazione con lo scopo di raggiungere un valore di massa specifico ottimizzando la rigidezza dello specchio. Dopodiché, sono state studiate tre diverse strutture di supporto per lo specchio secondario. L’alleggerimento delle strutture di supporto è stato studiato tramite l’analisi modale. Una volta progettate le tre strutture di supporto, è stata svolta un’analisi sulle prestazioni ottiche e meccaniche dei tre telescopi. Le prestazioni meccaniche sono state analizzate tramite le frequenze proprie e lo studio degli stress dovuti ai carichi di lancio, attraverso un’analisi quasi statica applicando diversi carichi. Le prestazioni ottiche sono state valutate tramite simulazioni numeriche utilizzando come parametro di valutazione per l’errore del fronte d’onda l’RMS. Il valore massimo accettabile di errore del fronte d’onda è stato suddiviso in diversi contributi per tenere conto di errori di fabbricazione e deformazioni dovute ai carichi operativi. Le deformazioni delle superfici ottiche e della struttura di supporto sono state calcolate tramite il programma Ansys Mechanical applicando carichi termici e di gravità. Infine, per lo studio delle aberrazioni del fronte d’onda sono stati calcolati i coefficienti dei polinomi di Zernike tramite un algoritmo in Matlab. Utilizzando questo processo di progettazione multidisciplinare, sono stati realizzati tre telescopi di cui uno rispetta tutti i requisiti imposti.
Design and analysis of diffraction-limited, ultra-lightweight, compact telescope for space optical communications
Tavola, Matteo
2023/2024
Abstract
As the demand for optical communications payloads increases, telescopes which reach higher levels of opto-mechanical quality are needed. At the same time lightweight efficient structures are needed to reduce the mass and minimize launch costs. This thesis presents an integrated design process for opto-mechanical structures based on multidisciplinary optimization. Starting from a baseline telescope produced for laboratory tests, three ultra-lightweight telescopes are designed to reach real mission profile opto-mechanical requirements. Firstly, the best lightweighting method for the main mirror is selected, then the mirror core is designed through the implementation of an optimization algorithm to reach a target mass by maximizing the mirror stiffness. Then, three different secondary mirror support structures are designed. The lightweighting steps applied to the structures are selected by evaluating the effects on the telescope natural frequencies through modal analysis. Once the secondary structures are designed, structural and optical performance of the three telescope assemblies are evaluated. Structural performance has been studied trough eigenfrequencies and launch loads, evaluated through quasi-static analysis by defining different load cases. Finally, optical performance is evaluated through numerical simulations using root mean square wavefront error as evaluation parameter. An error budget has been defined to take into account manufacturing errors and deformations due to in-orbit loads. In Ansys Mechanical, deformations of optical surfaces and structures are calculated by applying gravitational and thermal loads. Then, Zernike polynomials coefficients are calculated from optical surface wavefront deformation data through a Matlab code. Using this multidisciplinary optimization design process, three telescope assemblies have been designed and one of them satisfies all the constraints.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Tavola.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
6.09 MB
Formato
Adobe PDF
|
6.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226926