Mitral regurgitation (MR) is the second most common valvular heart disease worldwide. In recent years, mitral valve transcatheter edge-to-edge repair (M-TEER) technique has become an established alternative to surgery. The most common procedure is MitraClip® (Abbott Vascular, Santa Clara, CA, USA), which requires specialised skills and extensive practice. To address the steep learning curve, simulation-based training has emerged as an effective tool, offering immersive, hands-on experiences in a controlled environment. The project focuses on refining a pre-existing M-TEER simulator, developed using CT scans of a healthy patient’s heart. The first improvement involves actuating the MV leaflets. Tests were conducted to measure the thermal properties and mechanical behaviour of the materials chosen for creating the actuated leaflets (NiTinol wires, Ecoflex 00-30, and flexible guides) to evaluate their suitability for the application. Early tests on simplified leaflets (shaped like a parallelepiped) showed promising results in terms of movement and actuation times. A Finite Element Analysis (FEA) was useful to reproduce the behaviour of the leaflets during actuation, even though it was not able to precisely replicate their deflection. The second objective of this project was to gather the key anatomical features of hearts affected by MR to create a model with sufficiently generic characteristics to be used for training purposes. A three-dimensional Statistical Shape Model (SSM) was developed from 16 MRI scans of patients with MR. The average anatomy was extracted and used to design the new simulator, that was successfully 3D printed. Finally, anatomically realistic MV leaflets were produced using injection moulding technique. These leaflets were successfully actuated, showing good coaptation and the ability to perform multiple opening and closing cycles of satisfactory duration.
L’insufficienza mitralica è la seconda patologia valvolare cardiaca più comune nel mondo. Negli ultimi anni, gli interventi transcatetere di riparazione della valvola mitrale con la tecnica edge-to-edge sono diventati un’alternativa consolidata alla chirurgia. La procedura più comune è la MitraClip® (Abbott Vascular, Santa Clara, CA, USA), la quale richiede competenze specializzate e molta pratica. Uno strumento efficace per affrontare la ripida curva di apprendimento è la formazione mediante l’utilizzo di simulatori, che offre la possibilità di svolgere esperienze pratiche immersive in un ambiente controllato. Il progetto si concentra sul perfezionamento di un simulatore M-TEER preesistente, sviluppato utilizzando scansioni tomografiche del cuore di un paziente sano. La prima proposta di miglioramento consiste nell’attuare i leaflet valvolari. Sono stati condotti test per misurare le proprietà termiche e il comportamento meccanico dei materiali scelti per la creazione dei lembi attuati (fili in NiTinol, dell’Ecoflex 00-30 e delle guide flessibili) al fine di valutarne l'idoneità per l'applicazione. I primi test su lembi semplificati (a forma di parallelepipedo) hanno mostrato risultati incoraggianti in termini di movimento e tempi di attuazione. Un'analisi agli elementi finiti (FEA) è stata utile per riprodurre il comportamento dei lembi, anche se non è stata in grado di replicare in modo preciso la loro deflessione. Il secondo obiettivo di questo progetto consisteva nel raccogliere le caratteristiche anatomiche principali dei cuori affetti da insufficienza mitrale, al fine ottenere un modello con caratteristiche sufficientemente generiche per l’apprendimento. Si è creato quindi un modello statistico tridimensionale partendo da 16 risonanze magnetiche di pazienti affetti da insufficienza mitrale. Da questo modello si è ottenuta un’anatomia media utilizzata poi per progettare il nuovo simulatore. Infine, sono stati prodotti lembi valvolari mitralici anatomicamente realistici utilizzando la tecnica dello stampaggio a iniezione. Questi lembi sono stati attuati con successo, mostrando una buona coaptazione e la capacità di eseguire diversi cicli di apertura e chiusura di durata soddisfacente.
Development of a 3D-Printed Heart Model with an Actuated Valve for Transcatheter Edge-to-Edge Mitral Valve Repair Training
DALL'AGLIO, MARTINA
2023/2024
Abstract
Mitral regurgitation (MR) is the second most common valvular heart disease worldwide. In recent years, mitral valve transcatheter edge-to-edge repair (M-TEER) technique has become an established alternative to surgery. The most common procedure is MitraClip® (Abbott Vascular, Santa Clara, CA, USA), which requires specialised skills and extensive practice. To address the steep learning curve, simulation-based training has emerged as an effective tool, offering immersive, hands-on experiences in a controlled environment. The project focuses on refining a pre-existing M-TEER simulator, developed using CT scans of a healthy patient’s heart. The first improvement involves actuating the MV leaflets. Tests were conducted to measure the thermal properties and mechanical behaviour of the materials chosen for creating the actuated leaflets (NiTinol wires, Ecoflex 00-30, and flexible guides) to evaluate their suitability for the application. Early tests on simplified leaflets (shaped like a parallelepiped) showed promising results in terms of movement and actuation times. A Finite Element Analysis (FEA) was useful to reproduce the behaviour of the leaflets during actuation, even though it was not able to precisely replicate their deflection. The second objective of this project was to gather the key anatomical features of hearts affected by MR to create a model with sufficiently generic characteristics to be used for training purposes. A three-dimensional Statistical Shape Model (SSM) was developed from 16 MRI scans of patients with MR. The average anatomy was extracted and used to design the new simulator, that was successfully 3D printed. Finally, anatomically realistic MV leaflets were produced using injection moulding technique. These leaflets were successfully actuated, showing good coaptation and the ability to perform multiple opening and closing cycles of satisfactory duration.File | Dimensione | Formato | |
---|---|---|---|
2024_10_DallAglio_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Testo executive summary
Dimensione
975.93 kB
Formato
Adobe PDF
|
975.93 kB | Adobe PDF | Visualizza/Apri |
2024_10_DallAglio_Tesi_01.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
8.77 MB
Formato
Adobe PDF
|
8.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226937