The COVID-19 pandemic has led to the generation of a vast amount of plastic waste, mostly due to the widespread single-use face mask utilization of the earlier stages of the crisis. Such devices are commonly made of non-woven polypropylene (PP) fabrics and conventional ways of dealing with their waste include incineration and landfilling, with the associated environmental impacts. In recent years, in line with wider attention to sustainability and the principles of circular economy, different alternatives have been proposed to give a second life to this waste material, focusing especially on the recycling strategy. PP has the advantage of being a thermoplastic polymer, leading to the possibility of recycling simply by melting and reprocessing scrap material. In this thesis work, PP pellets recycled from face masks were used as feedstock material on a large-scale 3D printer (LFAM). Test prints were performed first, for any of the printed geometries, to optimize the printing parameters, since the high crystallinity degree of pure PP brings about significant warpage and adhesion problems. Commercial virgin PP pellets were also used on the large-scale 3D printer, while on the small-scale, two commercial PP filaments, one virgin and one recycled, were 3D printed as well. The utilization of the four different feedstocks allowed for comparisons between virgin and recycled materials, to investigate the effects of mechanical recycling, but also between the novel feedstock and the already commercialized ones. The materials composition, as well as their rheological, thermal, and mechanical properties were evaluated using different characterization techniques. Finally, printability tests were performed on all the materials, on both the small and the large-scale, to investigate the effects of two printing parameters (the nozzle temperature and the printing speed) on the geometrical accuracy of the printed components. Face mask recycled PP in particular was found to be adequate for the printing of small parts, while, when moving to medium-sized components, significant warpage affected all the prints, though a reduction upon increasing the nozzle temperature and printing speed was observed.
La pandemia degli ultimi anni ha portato alla generazione di una notevole quantità di rifiuti plastici, a causa soprattutto del massiccio utilizzo di mascherine monouso. Tali dispositivi sono comunemente realizzati in tessuto-non-tessuto di polipropilene (PP) e le strategie classiche di smaltimento dei loro scarti privilegiano l’uso di inceneritori e discariche, con i derivanti impatti ambientali. In un’ottica di maggiore sostenibilità e più in linea con i principi dell’economia circolare, diverse alternative sono state proposte negli ultimi anni per dare una seconda vita a questi rifiuti, privilegiando soprattutto il riciclaggio. Il polipropilene ha infatti il vantaggio di essere un polimero termoplastico, il che ne rende possibile il riciclaggio semplicemente fondendolo e riprocessandolo. In questa tesi, nello specifico, pellet di PP riciclato da mascherine sono stati utilizzati come materiale di stampa su una stampante 3D di grande formato (LFAM). Per ciascuna delle geometrie stampate, test preliminari sono stati eseguiti per ottimizzare i parametri di stampa, visto l’alto grado di cristallinità del PP che porta con sé notevoli problemi di distorsione e adesione. Anche pellet di PP vergine sono stati stampati, sempre su grande formato, mentre su piccolo formato due filamenti commerciali, uno vergine e uno riciclato, sono stati utilizzati. Questo ha reso possibili comparazioni tra materiale vergine e riciclato, valutando gli effetti del riciclaggio meccanico, ma anche tra materiali commercializzati e non. Le proprietà termiche, reologiche e meccaniche dei vari materiali, nonché le loro composizioni, sono state poi valutate attraverso diverse tecniche di caratterizzazione. Infine, test di stampabilità sono stati eseguiti per valutare l’influenza di due parametri di stampa (la temperatura dell’ugello e la velocità di stampa) sull’accuratezza dimensionale dei componenti ottenuti. Il PP riciclato da mascherine, in particolare, si è rivelato adeguato alla stampa di piccole geometrie, ma meno alla stampa di oggetti di dimensioni intermedie, in cui forti distorsioni hanno affetto tutte le stampe, seppur con una certa riduzione aumentando temperatura e velocità di stampa.
Characterization and recycling of single-use face masks through large-format additive manufacturing for circular economy applications
Giudici, Federico
2023/2024
Abstract
The COVID-19 pandemic has led to the generation of a vast amount of plastic waste, mostly due to the widespread single-use face mask utilization of the earlier stages of the crisis. Such devices are commonly made of non-woven polypropylene (PP) fabrics and conventional ways of dealing with their waste include incineration and landfilling, with the associated environmental impacts. In recent years, in line with wider attention to sustainability and the principles of circular economy, different alternatives have been proposed to give a second life to this waste material, focusing especially on the recycling strategy. PP has the advantage of being a thermoplastic polymer, leading to the possibility of recycling simply by melting and reprocessing scrap material. In this thesis work, PP pellets recycled from face masks were used as feedstock material on a large-scale 3D printer (LFAM). Test prints were performed first, for any of the printed geometries, to optimize the printing parameters, since the high crystallinity degree of pure PP brings about significant warpage and adhesion problems. Commercial virgin PP pellets were also used on the large-scale 3D printer, while on the small-scale, two commercial PP filaments, one virgin and one recycled, were 3D printed as well. The utilization of the four different feedstocks allowed for comparisons between virgin and recycled materials, to investigate the effects of mechanical recycling, but also between the novel feedstock and the already commercialized ones. The materials composition, as well as their rheological, thermal, and mechanical properties were evaluated using different characterization techniques. Finally, printability tests were performed on all the materials, on both the small and the large-scale, to investigate the effects of two printing parameters (the nozzle temperature and the printing speed) on the geometrical accuracy of the printed components. Face mask recycled PP in particular was found to be adequate for the printing of small parts, while, when moving to medium-sized components, significant warpage affected all the prints, though a reduction upon increasing the nozzle temperature and printing speed was observed.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Giudici_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: tesi
Dimensione
211.35 MB
Formato
Adobe PDF
|
211.35 MB | Adobe PDF | Visualizza/Apri |
2024_10_Giudici_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: executive summary
Dimensione
28.76 MB
Formato
Adobe PDF
|
28.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226947