As the world shifts to electronics, the demand for batteries is rising. Anode-free lithium-ion batteries are essential for affordable, high-energy, and long-lasting solutions, helping to transition from non-renewable to renewable energy sources. This present thesis project is focused on the development and characterization of the co-deposition of nanoparticles with a lithiophilic material onto the copper current collector for anode-free Li-ion batteries, employing graphene oxide (GO) and Carbon Nanotubes (CNTs) in Zinc solution at varying concentrations. Electrochemical characterizations were conducted to evaluate the performance of lithium half cells. The material characterization of the deposited coating on the copper current collector and the platting cycles inside the half-cell was also carried out. For the sake of comparative studies batteries utilizing bare copper and zinc-coated current collectors were also included. , The Nucleation Overpotential of all the samples was studied at 0.5 mA cm-2, 1 mA cm 2 and 2 mA cm-2 Current density while Bare Copper showed values ranging from 0.07919 mV for 0.5 mA cm-2 to 0.11037 mV for 2 mA cm-2. 0.01g/L Graphene displayed values of 0.0196 mV and 0.0367 mV for the same current densities respectively. Further on, through the long-term cycling, it was also noticed that while Bare Copper and Zinc showed cyclability for up to 66 and 74 cycles respectively the Carbon and Graphene samples showed around 100 cycles of cyclability without drastic reduction in CE percentage. As expected, substantial improvements were observed across all tests when compared to uncoated copper, attributed to the non-lithiophillic nature of the material, resulting in elevated energetic barriers to lithium deposition. Further on, the inclusion of the nanoparticles showed even more improvement in the performance. Among CNT and GO, the latter was seen to show better performances at low concentrations and homogeneous film depositions. However, the co-deposited films showed better behavior as compared to the Lithiophobic ones and the bare copper ones. Observing that with increasing concentrations while there is an increase in performance there can also be a risk of heterogeneous thin film formation leading to low performance.
Man mano che il mondo si sposta verso l'elettronica, la domanda di batterie è in aumento. Le batterie agli ioni di litio senza anodo sono essenziali per soluzioni economiche, ad alta energia e di lunga durata, facilitando la transizione dalle fonti di energia non rinnovabili a quelle rinnovabili. Il presente progetto di tesi si concentra sullo sviluppo e sulla caratterizzazione della co-deposizione di nanoparticelle con un materiale litiofilo sul collettore di corrente in rame per batterie agli ioni di litio senza anodo, utilizzando ossido di grafene (GO) e nanotubi di carbonio (CNT) in soluzione di zinco a concentrazioni variabili. Sono state condotte caratterizzazioni elettrochimiche per valutare le prestazioni delle semicelle al litio. È stata inoltre effettuata la caratterizzazione del materiale del rivestimento depositato sul collettore di corrente in rame e dei cicli di placcatura all'interno della semicella. A scopo di studi comparativi, sono state incluse anche batterie che utilizzano collettori di corrente in rame nudo e rivestiti di zinco. Il sovrapotenziale di nucleazione di tutti i campioni è stato studiato a 0,5mA cm-2, 1 mA cm-2 e 2 mA cm-2 current density, mentre il rame nudo ha mostrato valori che vanno da 0,07919 mV per 0,5 mA cm-2 a 0,11037 mV per 2 mA cm-2. 0,01 g/L di grafene ha mostrato valori di 0,0196 mV e 0,0367 mV per gli stessi current density rispettivamente. Inoltre, attraverso il ciclismo a lungo termine, è stato notato che mentre il rame nudo e lo zinco hanno mostrato cicli fino a 66 e 74 rispettivamente, i campioni di carbonio e grafene hanno mostrato circa 100 cicli di ciclabilità senza drastica riduzione della percentuale di CE. I miglioramenti osservati nei test rispetto al rame non rivestito sono stati attribuiti alla natura non litiofila del materiale, causando barriere energetiche elevate alla deposizione del litio. L'inclusione delle nanoparticelle ha ulteriormente migliorato le prestazioni. Tra CNT e GO, quest'ultimo ha dimostrato migliori prestazioni a basse concentrazioni e deposizioni di film omogenei. Tuttavia, i film co-depositati hanno mostrato un comportamento migliore rispetto a quelli litiofobi e a quelli in rame nudo. L'aumento delle concentrazioni può comportare il rischio di formazione di film eterogenei, influenzando negativamente le prestazioni.
Co-deposition of carbonaceous nanoparticle with zinc onto copper substrates for current collector engineering in anode-free lithium-ion battery applications
Venugopal, Saraswathy
2023/2024
Abstract
As the world shifts to electronics, the demand for batteries is rising. Anode-free lithium-ion batteries are essential for affordable, high-energy, and long-lasting solutions, helping to transition from non-renewable to renewable energy sources. This present thesis project is focused on the development and characterization of the co-deposition of nanoparticles with a lithiophilic material onto the copper current collector for anode-free Li-ion batteries, employing graphene oxide (GO) and Carbon Nanotubes (CNTs) in Zinc solution at varying concentrations. Electrochemical characterizations were conducted to evaluate the performance of lithium half cells. The material characterization of the deposited coating on the copper current collector and the platting cycles inside the half-cell was also carried out. For the sake of comparative studies batteries utilizing bare copper and zinc-coated current collectors were also included. , The Nucleation Overpotential of all the samples was studied at 0.5 mA cm-2, 1 mA cm 2 and 2 mA cm-2 Current density while Bare Copper showed values ranging from 0.07919 mV for 0.5 mA cm-2 to 0.11037 mV for 2 mA cm-2. 0.01g/L Graphene displayed values of 0.0196 mV and 0.0367 mV for the same current densities respectively. Further on, through the long-term cycling, it was also noticed that while Bare Copper and Zinc showed cyclability for up to 66 and 74 cycles respectively the Carbon and Graphene samples showed around 100 cycles of cyclability without drastic reduction in CE percentage. As expected, substantial improvements were observed across all tests when compared to uncoated copper, attributed to the non-lithiophillic nature of the material, resulting in elevated energetic barriers to lithium deposition. Further on, the inclusion of the nanoparticles showed even more improvement in the performance. Among CNT and GO, the latter was seen to show better performances at low concentrations and homogeneous film depositions. However, the co-deposited films showed better behavior as compared to the Lithiophobic ones and the bare copper ones. Observing that with increasing concentrations while there is an increase in performance there can also be a risk of heterogeneous thin film formation leading to low performance.File | Dimensione | Formato | |
---|---|---|---|
2024_07_Thesis_Venugopal.pdf
accessibile in internet per tutti
Dimensione
6.57 MB
Formato
Adobe PDF
|
6.57 MB | Adobe PDF | Visualizza/Apri |
2024_07_Executive_Summary_Venugopal.pdf
accessibile in internet per tutti
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226959