Flooding is a growing threat to urban areas, putting infrastructure, economies and lives at risk. Traditional methods of flood prediction, which rely on single data sources like meteorological forecasts or satellite images, often fail to capture the complexity of these events in urban environments. This Master’s Thesis presents a new method for improving flood prediction and vulnerability mapping by combining multiple data sources. The system integrates meteorological, satellite, socio-economic, and social media data to provide more accurate and timely flood alerts. It also identifies Areas of Interest (AOIs) in urban areas that are most vulnerable to both physical and socio-economic impacts. The methodology was tested using real-world case studies, showing its effectiveness in delivering early flood warnings and detailed vulnerability maps. While the system successfully predicts high risk areas, further improvements could be made for low-impact floods. This research offers a more comprehensive, data-driven approach to urban flood risk management.
Le inondazioni rappresentano una minaccia crescente per le aree urbane, mettendo a rischio infrastrutture, economie e vite umane. I metodi tradizionali di previsione delle alluvioni, che si basano su singole fonti di dati come le previsioni meteorologiche o le immagini satellitari, spesso non riescono a cogliere la complessità di questi eventi negli ambienti urbani. Questa tesi presenta un nuovo metodo per migliorare la previsione delle inondazioni e la mappatura della vulnerabilità, combinando più fonti di dati. Il sistema integra dati meteorologici, satellitari, socio-economici e dei social media per fornire alert più accurati e tempestivi sulle alluvioni. Inoltre, identifica le aree di interesse (AOI) nelle zone urbane più vulnerabili agli impatti strutturali e socio-economici. La metodologia è stata testata utilizzando casi di studio reali, dimostrando la sua efficacia nel fornire avvisi tempestivi di alluvione e mappe di vulnerabilità dettagliate. Sebbene il sistema riesca a prevedere le aree ad alto rischio, ulteriori miglioramenti potrebbero essere apportati per le alluvioni a basso impatto. Questo lavoro offre un approccio più completo, basato sui dati multi-fonte, alla gestione del rischio di alluvioni urbane.
A systematic approach for dynamic flood alerts and urban vulnerability mapping integrating multi-source data
SPROCATI, TOMMASO
2023/2024
Abstract
Flooding is a growing threat to urban areas, putting infrastructure, economies and lives at risk. Traditional methods of flood prediction, which rely on single data sources like meteorological forecasts or satellite images, often fail to capture the complexity of these events in urban environments. This Master’s Thesis presents a new method for improving flood prediction and vulnerability mapping by combining multiple data sources. The system integrates meteorological, satellite, socio-economic, and social media data to provide more accurate and timely flood alerts. It also identifies Areas of Interest (AOIs) in urban areas that are most vulnerable to both physical and socio-economic impacts. The methodology was tested using real-world case studies, showing its effectiveness in delivering early flood warnings and detailed vulnerability maps. While the system successfully predicts high risk areas, further improvements could be made for low-impact floods. This research offers a more comprehensive, data-driven approach to urban flood risk management.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Sprocati_Tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
23.63 MB
Formato
Adobe PDF
|
23.63 MB | Adobe PDF | Visualizza/Apri |
2024_10_Sprocati_ExecutiveSummary.pdf
non accessibile
Descrizione: Testo dell'executive summary
Dimensione
5.3 MB
Formato
Adobe PDF
|
5.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/226996