Pressure-fed systems are mostly discarded for heavy launcher vehicles due to tank thickness and additional pressurizing system weight. The contrary is generally applied to small launchers. Turbopumps increase cycle efficiency, but at complexity cost and suffer from downscaling issues. Prediction of the performance of the main components of a space turbopump is a subject of prime importance for launcher feasibility. In this study, centrifugal pumps and radial inflow turbines are studied for a small launcher application. Although radial turbines are widely employed in automotive and power generation industries, their usage in aerospace has been less documented. A radial turbine allows a higher pressure ratio with a lower mass flow rate. In opposition, the documentation concerning centrifugal pumps is well furnished. This study investigates the performance prediction of a radial turbine and two centrifugal pumps, one with oxygen as oxidizer and the other with RP-1 as fuel, across on and off-design scenarios. It deals with losses calculation incurred not only within the rotor and volute part but also within the nozzle-ring of a turbine. On the turbine side, a mean-line design code is developed and validated with literature cases. A local and global sensitivity analyses are performed to understand the main parameters affecting its global efficiency. Then, an optimization procedure is studied for a pre-sizing design avoiding detailed fluid calculation. Finally, turbulent CFD simulations on specific loss contributions are performed to compare the accuracy of the results on both the pump and turbine sides. By adding loss prediction in the turbine mean-line design, geometrical optimization increases overall efficiency by 3.5 % with similar results compared to CFD analysis. The hydraulic pump efficiency is predicted within a 5 % error compared to CFD. This roadmap procedure could be added to a Concurrent Design Facility, aimed at designing all different components of the entire rocket engine.
I sistemi ad alimentazione a pressione sono scartati per i veicoli di lancio pesanti a causa dello spessore dei serbatoi e del peso aggiuntivo del sistema di pressurizzazione. Al contrario, vengono generalmente applicati ai piccoli lanciatori. Le turbopompe aumentano l'efficienza del ciclo, ma conducono a strutture più complesse e soffrono di problemi di riduzione delle dimensioni. La previsione delle prestazioni dei principali componenti di una turbopompa spaziale è un tema di primaria importanza per la fattibilità del lanciatore. In questo studio, vengono esaminate pompe centrifughe e turbine radiali per un'applicazione su un piccolo lanciatore. Sebbene le turbine radiali siano ampiamente impiegate nell'industria automobilistica e nella generazione di energia, il loro utilizzo in ambito aerospaziale è stato meno documentato. Una turbina radiale consente un rapporto di pressione più elevato con una portata di massa inferiore. Questo studio indaga la previsione delle prestazioni di una turbina radiale e di due pompe centrifughe, una con ossigeno come ossidante e l'altra con RP-1 come carburante. Lo studio si focalizza sulle perdite non solo nella parte del rotore e della voluta, ma anche all'interno dell'anello di ugelli di una turbina. Per la turbina, un codice di progetto di linea media è sviluppato e validato con casi presenti in letteratura. Sono effettuate analisi di sensibilità locali e globali per comprendere i principali parametri che influenzano l'efficienza globale. Successivamente, è studiata una procedura di ottimizzazione evitando calcoli fluidodinamici dettagliati. Infine, sono eseguite simulazioni CFD su contributi specifici di perdita per confrontare l'accuratezza dei risultati sia per le pompe che per la turbina. Aggiungendo la previsione delle perdite nel design di linea media della turbina, l'ottimizzazione geometrica aumenta l'efficienza complessiva del 3.5 % con risultati simili rispetto all'analisi CFD. L'efficienza idraulica delle pompe viene prevista con un errore del 5 % rispetto al CFD. Questa procedura potrebbe essere integrata in una Concurrent Design Facility, mirata alla progettazione di tutti i diversi componenti dell'intero motore.
Performance prediction and optimization of turbopump components of a small rocket engine
Bougault, Léo
2023/2024
Abstract
Pressure-fed systems are mostly discarded for heavy launcher vehicles due to tank thickness and additional pressurizing system weight. The contrary is generally applied to small launchers. Turbopumps increase cycle efficiency, but at complexity cost and suffer from downscaling issues. Prediction of the performance of the main components of a space turbopump is a subject of prime importance for launcher feasibility. In this study, centrifugal pumps and radial inflow turbines are studied for a small launcher application. Although radial turbines are widely employed in automotive and power generation industries, their usage in aerospace has been less documented. A radial turbine allows a higher pressure ratio with a lower mass flow rate. In opposition, the documentation concerning centrifugal pumps is well furnished. This study investigates the performance prediction of a radial turbine and two centrifugal pumps, one with oxygen as oxidizer and the other with RP-1 as fuel, across on and off-design scenarios. It deals with losses calculation incurred not only within the rotor and volute part but also within the nozzle-ring of a turbine. On the turbine side, a mean-line design code is developed and validated with literature cases. A local and global sensitivity analyses are performed to understand the main parameters affecting its global efficiency. Then, an optimization procedure is studied for a pre-sizing design avoiding detailed fluid calculation. Finally, turbulent CFD simulations on specific loss contributions are performed to compare the accuracy of the results on both the pump and turbine sides. By adding loss prediction in the turbine mean-line design, geometrical optimization increases overall efficiency by 3.5 % with similar results compared to CFD analysis. The hydraulic pump efficiency is predicted within a 5 % error compared to CFD. This roadmap procedure could be added to a Concurrent Design Facility, aimed at designing all different components of the entire rocket engine.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Bougault.pdf
non accessibile
Descrizione: thesis text
Dimensione
12.21 MB
Formato
Adobe PDF
|
12.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227133