This thesis primarily focuses on the value propositions of the AI startups which have been founded 10-12 years ago and are operating in the supply chain sector, addressing the lack in the literature regarding how AI-driven innovations are transforming the entire supply chain including production, logistics, warehousing, procurement, and transportation. Therefore, it is of paramount importance to create a framework which allows a systematic analysis of the startups revealing core elements of the value proposition being provided by them. In this research, we started by developing a comprehensive taxonomy to categorize the 50 AI startups in the supply chain sector, focusing on how they add value and set themselves apart from their competitors. The goal of this taxonomy was to create a clear framework for understanding the different ways these startups use AI to make a difference in the industry. Once we had this foundation in place, we moved on to perform a clustering analysis. Hierarchical clustering techniques were applied to further analyze the startups and identify distinct patterns in their value propositions. This led us to identify four distinct groups, each with its own strategic focus and unique approach to solving supply chain challenges. After discovering these clusters, we selected one representative startup from each group for an in-depth case study. These case studies allowed us to confirm that the startups' real-world activities matched their placement in the taxonomy, further validating our findings. As a result, this thesis doesn’t just present a taxonomy—it reveals distinct patterns in how AI startups are creating value in the supply chain sector, showing how they use AI to gain a competitive edge and better serve their customers.
Questa tesi si concentra principalmente sulle value proposition delle startup di intelligenza artificiale (AI) fondate 10-12 anni fa e operanti nel settore della supply chain, affrontando la lacuna nella letteratura su come le innovazioni basate sull'AI stiano trasformando l'intera catena di fornitura, inclusi produzione, logistica, magazzinaggio, approvvigionamento e trasporto. È quindi di fondamentale importanza creare un quadro che consenta un'analisi sistematica delle startup, rivelando gli elementi principali della value proposition da esse offerti. In questa ricerca, abbiamo iniziato sviluppando una tassonomia completa per classificare 50 startup di AI nel settore della supply chain, concentrandoci su come esse creano valore e si distinguono dai loro concorrenti. L'obiettivo di questa tassonomia era creare un framework chiaro per comprendere i diversi modi in cui queste startup utilizzano l'AI per fare la differenza nell'industria. Una volta stabilita questa base, siamo passati ad eseguire un'analisi di clustering. Sono state applicate tecniche di clustering gerarchico per analizzare ulteriormente le startup e identificare schemi distinti nelle loro value proposition. Questo ci ha portato a identificare quattro gruppi distinti, ciascuno con il proprio focus strategico e un approccio unico alla risoluzione delle sfide della supply chain. Dopo aver scoperto questi cluster, abbiamo selezionato una startup rappresentativa da ciascun gruppo per uno studio di caso approfondito. Questi studi di caso ci hanno permesso di confermare che le attività reali delle startup corrispondevano al loro posizionamento nella tassonomia, validando ulteriormente i nostri risultati. Di conseguenza, questa tesi non si limita a presentare una tassonomia, ma rivela schemi distinti su come le startup di AI stanno creando valore nel settore della supply chain, mostrando come utilizzano l'AI per ottenere un vantaggio competitivo e servire meglio i loro clienti.
Analyzing Value Proposition of AI Startups and Young Companies in the Field of Supply Chain
SHARIF, SYED MUHAMMAD;SHAIKH, HAMZA AHMED
2023/2024
Abstract
This thesis primarily focuses on the value propositions of the AI startups which have been founded 10-12 years ago and are operating in the supply chain sector, addressing the lack in the literature regarding how AI-driven innovations are transforming the entire supply chain including production, logistics, warehousing, procurement, and transportation. Therefore, it is of paramount importance to create a framework which allows a systematic analysis of the startups revealing core elements of the value proposition being provided by them. In this research, we started by developing a comprehensive taxonomy to categorize the 50 AI startups in the supply chain sector, focusing on how they add value and set themselves apart from their competitors. The goal of this taxonomy was to create a clear framework for understanding the different ways these startups use AI to make a difference in the industry. Once we had this foundation in place, we moved on to perform a clustering analysis. Hierarchical clustering techniques were applied to further analyze the startups and identify distinct patterns in their value propositions. This led us to identify four distinct groups, each with its own strategic focus and unique approach to solving supply chain challenges. After discovering these clusters, we selected one representative startup from each group for an in-depth case study. These case studies allowed us to confirm that the startups' real-world activities matched their placement in the taxonomy, further validating our findings. As a result, this thesis doesn’t just present a taxonomy—it reveals distinct patterns in how AI startups are creating value in the supply chain sector, showing how they use AI to gain a competitive edge and better serve their customers.File | Dimensione | Formato | |
---|---|---|---|
Thesis Finalized.pdf
accessibile in internet per tutti
Descrizione: Thesis with Italian Abstract and List of Figures & Tables
Dimensione
5.43 MB
Formato
Adobe PDF
|
5.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227147