Plastic waste has become a critical environmental issue, with millions of tons of plastic accumulating in our oceans and landfills and can last there for centuries harming the ecosystem. This thesis investigates the bioengineering of PET hydrolase enzymes to optimize their catalytic efficiency for the degradation of PET, a major contributor to global plastic waste. The study addresses a critical limitation in enzymatic PET degradation: enzyme inactivation due to acidification of the solution because of the accumulation of acidic products. By using different computational methods, including constant pH molecular dynamics (CpHMD) simulations and online tools like DeepKa and Residue Depth, the pKa values of key catalytic residues was estimated and the impact of specific mutations designed to improve enzyme performance in acidic environments was explored. While CpHMD simulations were found to be computationally expensive, the use of online pKa estimation tools provided reliable results, allowing for the identification of promising enzyme mutants, as for example mutant 132, that was selected for its production and experimental testing for its use on industrial applications.

I rifiuti di plastica sono diventati una questione ambientale critica, con milioni di tonnellate di plastica che si accumulano nei nostri oceani e discariche, dove possono persistere per secoli, danneggiando l'ecosistema. Questa tesi indaga sull'ingegneria biochimica degli enzimi idrolasi PET per ottimizzare la loro efficienza catalitica nella degradazione del PET, un importante contributore ai rifiuti plastici globali. Lo studio affronta una limitazione cruciale nella degradazione enzimatica del PET: l'inattivazione dell'enzima a causa dell'acidificazione della soluzione dovuta all'accumulo di prodotti acidi. Utilizzando diversi metodi computazionali, tra cui simulazioni di dinamica molecolare a pH costante (CpHMD) e strumenti online come DeepKa e Residue Depth, sono stati stimati i valori di pKa dei residui catalitici chiave e sono stati esplorati gli effetti di specifiche mutazioni progettate per migliorare le prestazioni enzimatiche in ambienti acidi. Sebbene le simulazioni CpHMD si siano rivelate costose in termini computazionali, l'uso di strumenti online di stima del pKa ha fornito risultati affidabili, permettendo l'identificazione di mutanti enzimatici promettenti, come ad esempio il mutante 132, selezionato per la sua produzione e per i test sperimentali per il suo impiego in applicazioni industriali.

Bioengineering of a highly optimized PETase enzyme for biological plastic degradation

MEDRANO CAMPBELL, ESTANISLAO
2023/2024

Abstract

Plastic waste has become a critical environmental issue, with millions of tons of plastic accumulating in our oceans and landfills and can last there for centuries harming the ecosystem. This thesis investigates the bioengineering of PET hydrolase enzymes to optimize their catalytic efficiency for the degradation of PET, a major contributor to global plastic waste. The study addresses a critical limitation in enzymatic PET degradation: enzyme inactivation due to acidification of the solution because of the accumulation of acidic products. By using different computational methods, including constant pH molecular dynamics (CpHMD) simulations and online tools like DeepKa and Residue Depth, the pKa values of key catalytic residues was estimated and the impact of specific mutations designed to improve enzyme performance in acidic environments was explored. While CpHMD simulations were found to be computationally expensive, the use of online pKa estimation tools provided reliable results, allowing for the identification of promising enzyme mutants, as for example mutant 132, that was selected for its production and experimental testing for its use on industrial applications.
ING - Scuola di Ingegneria Industriale e dell'Informazione
10-ott-2024
2023/2024
I rifiuti di plastica sono diventati una questione ambientale critica, con milioni di tonnellate di plastica che si accumulano nei nostri oceani e discariche, dove possono persistere per secoli, danneggiando l'ecosistema. Questa tesi indaga sull'ingegneria biochimica degli enzimi idrolasi PET per ottimizzare la loro efficienza catalitica nella degradazione del PET, un importante contributore ai rifiuti plastici globali. Lo studio affronta una limitazione cruciale nella degradazione enzimatica del PET: l'inattivazione dell'enzima a causa dell'acidificazione della soluzione dovuta all'accumulo di prodotti acidi. Utilizzando diversi metodi computazionali, tra cui simulazioni di dinamica molecolare a pH costante (CpHMD) e strumenti online come DeepKa e Residue Depth, sono stati stimati i valori di pKa dei residui catalitici chiave e sono stati esplorati gli effetti di specifiche mutazioni progettate per migliorare le prestazioni enzimatiche in ambienti acidi. Sebbene le simulazioni CpHMD si siano rivelate costose in termini computazionali, l'uso di strumenti online di stima del pKa ha fornito risultati affidabili, permettendo l'identificazione di mutanti enzimatici promettenti, come ad esempio il mutante 132, selezionato per la sua produzione e per i test sperimentali per il suo impiego in applicazioni industriali.
File allegati
File Dimensione Formato  
2024_10_MedranoCampbell.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: thesis text
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri
2024_10_MedranoCampbell_ExecutiveSummary.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: executive summary
Dimensione 681.98 kB
Formato Adobe PDF
681.98 kB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/227149