This thesis investigates the efficacy of Marketing Mix Modeling (MMM) in optimizing marketing investments across both traditional and digital chan- nels, with the overarching goal of improving Return on Investment (ROI). A key focus of the research is the detailed analysis of interaction effects between various marketing channels, which fills a notable gap in current lit- erature by shedding light on the synergistic and antagonistic outcomes that arise from combined media strategies. Through the application of advanced statistical methods and machine learning techniques, the study evaluates both short-term and long-term impacts on brand awareness, consumer be- havior, and overall sales performance. The research highlights the distinct roles of digital and traditional chan- nels, where digital platforms tend to deliver immediate, measurable returns, while traditional media such as television contributes significantly to long- term brand building. By analyzing the interplay between these channels, the study reveals how their interactions can amplify or, in some cases, di- minish marketing efficiency. The inclusion of saturation curves and the law of diminishing returns further refines investment strategies by identifying the optimal spending levels across each channel. A critical contribution of this thesis lies in providing actionable insights for marketing budget allocation, aligning short-term digital gains with the enduring benefits of traditional media. By evaluating the interdependencies between channels, this study offers a more comprehensive understanding of how to allocate marketing resources for maximum overall impact. The findings underscore the importance of cross-channel optimization to enhance both marketing efficiency and long-term brand loyalty, offering practical recommendations for marketers to navigate an increasingly complex media landscape.
Questa tesi indaga l’efficacia del Marketing Mix Modeling (MMM) nell’ottimizzazione degli investimenti di marketing su canali tradizionali e digitali, con l’obiettivo di migliorare il ritorno sugli investimenti (ROI). Un elemento chiave della ricerca è l’analisi dettagliata degli effetti di interazione tra i diversi canali di marketing, colmando una lacuna nella letteratura attuale e fornendo approfondimenti sugli esiti sinergici o antagonistici delle strategie mediali combinate. Utilizzando metodi statistici avanzati e tecniche di apprendimento automatico, lo studio valuta sia gli impatti a breve termine che quelli a lungo termine sulla consapevolezza del marchio, sul comportamento dei consumatori e sulle prestazioni di vendita. La ricerca evidenzia i ruoli distinti dei canali digitali e tradizionali, dove le piattaforme digitali tendono a offrire ritorni immediati, mentre i media tradizionali come la televisione contribuiscono alla costruzione del brand nel lungo periodo. L’analisi dell’interazione tra questi canali rivela come tali combinazioni possano amplificare o, in alcuni casi, ridurre l’efficienza del marketing. L’inclusione delle curve di saturazione e della legge dei rendimenti decrescenti affina ulteriormente le strategie di investimento, identificando i livelli di spesa ottimali tra i vari canali. Un contributo critico di questa tesi risiede nel fornire spunti pratici per l’allocazione del budget, allineando i guadagni digitali a breve termine con i benefici duraturi dei media tradizionali. Valutando le interdipendenze tra i canali, lo studio offre una comprensione più completa di come allocare le risorse di marketing per ottenere il massimo impatto complessivo. I risultati sottolineano l’importanza dell’ottimizzazione cross-canale per migliorare sia l’efficienza del marketing che la fedeltà al marchio nel lungo termine, offrendo raccomandazioni pratiche per i marketer che operano in un panorama mediale sempre più complesso.
Exploring the interdependencies between marketing channels: a data-driven approach to media optimization
SHYNTAS, ALI;AITKALIYEV, RAMAZAN
2023/2024
Abstract
This thesis investigates the efficacy of Marketing Mix Modeling (MMM) in optimizing marketing investments across both traditional and digital chan- nels, with the overarching goal of improving Return on Investment (ROI). A key focus of the research is the detailed analysis of interaction effects between various marketing channels, which fills a notable gap in current lit- erature by shedding light on the synergistic and antagonistic outcomes that arise from combined media strategies. Through the application of advanced statistical methods and machine learning techniques, the study evaluates both short-term and long-term impacts on brand awareness, consumer be- havior, and overall sales performance. The research highlights the distinct roles of digital and traditional chan- nels, where digital platforms tend to deliver immediate, measurable returns, while traditional media such as television contributes significantly to long- term brand building. By analyzing the interplay between these channels, the study reveals how their interactions can amplify or, in some cases, di- minish marketing efficiency. The inclusion of saturation curves and the law of diminishing returns further refines investment strategies by identifying the optimal spending levels across each channel. A critical contribution of this thesis lies in providing actionable insights for marketing budget allocation, aligning short-term digital gains with the enduring benefits of traditional media. By evaluating the interdependencies between channels, this study offers a more comprehensive understanding of how to allocate marketing resources for maximum overall impact. The findings underscore the importance of cross-channel optimization to enhance both marketing efficiency and long-term brand loyalty, offering practical recommendations for marketers to navigate an increasingly complex media landscape.File | Dimensione | Formato | |
---|---|---|---|
Thesis Shyntas-Aitkaliyev.pdf
accessibile in internet per tutti a partire dal 17/09/2025
Dimensione
26.4 MB
Formato
Adobe PDF
|
26.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227186