Minamata Disaster rose the World’s awareness of mercury as water pollutant. Recently issued reports, made by the United Nations and the European Union environmental agencies, highlighted how mercury still poses today a huge threat to the environment and to the human population. After its release, this pollutant is free to travel, following the mercury cycle. It is estimated that 350.000 tons of mercury are stored into the oceanic waters, where it converted to methylmercury, its most toxic form. There, it undergoes through bio-absorption, bio-accumulation and bio-magnification processes by the aquatic biota, climbing up the food chain and reaching the humans populations through fish consumption, provoking the Minamata disease. An effective method for removing mercury from the environment involves capturing it with adsorbent materials, which are then safely removed and disposed of. My thesis work primarily focuses on the functionalization and testing of cellulose-based xerogels, made from renewable biomasses, functionalized with porphyrinic sensors, synthesized by the Sensor Group of “University of Rome – Tor Vergata”. These molecules are able to change colour upon the interaction with mercury ions, giving to the xerogels the properties of a colorimetric sensor. We optimized the formulation following the safe-by-design principles, improving the eco-compatibility of the material utilizing a more efficient and less eco-toxic cross-linker, such as the bPEI 1.8 kDa. The produced materials were then characterized using NMR, FTIR and SEM, while their adsorption and sensing abilities were tested. The results pointed out that the xerogels made with bPEI 1.8 kDa were the most promising ones, able to reach 90% of mercury mass adsorption and allowing its detection at concentrations lower than 200 ppm. The Sensor Group has developed a cost-effective and highly portable optical sensing setup using commercially available equipment, allowing fast in-situ measurements, correlating the colour tone of this novel xerogels to the amount of mercury adsorbed. This approach offers a practical perspective for real-time monitoring of mercury levels through simple optical measurements.
Diversi rapporti recentemente pubblicati dalle agenzie di protezione dell’ambiente delle Nazioni Unite e dell'Unione Europea, hanno evidenziato come il mercurio rappresenti ancor’oggi un'enorme minaccia per l'ambiente e per la popolazione umana. A seguito della sua emissione in atmosfera, l’inquinante è libero di disperdersi nell’ambiente seguendo il cosiddetto “ciclo del mercurio”. Attualmente sono stimate 350.000 tonnellate presenti nelle acque oceaniche, dove viene convertito a metilmercurio, la forma più tossica. Attraverso i processi di bioassorbimento, bioaccumulo e biomagnificazione da parte del biota acquatico, è in grado di risalire la catena alimentare raggiungendo l’uomo, la cui assunzione è causa della malattia di Minamata. Un metodo efficace per la rimozione del mercurio dall'ambiente consiste nella cattura con materiali adsorbenti, i quali vengono successivamente smaltiti in modo sicuro. Il mio lavoro di tesi si concentra principalmente sulla funzionalizzazione e sul testing di xerogel a base di cellulosa, ricavata da biomassa rinnovabile, per mezzo dell’introduzione di sensori porfirinici, sintetizzati dal Sensor Group dell'Università di Roma - Tor Vergata, in grado di cambiare colore in seguito all'interazione con gli ioni di mercurio presenti in acqua, conferendo al materiale le proprietà di un sensore colorimetrico. La formulazione è stata ottimizzata impiegando un crosslinker più efficiente e meno dannoso, il bPEI 1,8 kDa, ispirandosi ai concetti di safe-by-design. I materiali prodotti sono stati poi caratterizzati mediante NMR, FTIR e SEM. I risultati dei test di adsorbimento e di colorimetria hanno evidenziato come gli xerogel realizzati con bPEI 1,8 kDa siano in grado di raggiungere il 90% di adsorbimento della massa di mercurio disciolta in acqua e di consentirne la rilevazione fino a 200 ppm. Utilizzando componenti facilmente reperibili in commercio, il Sensor Group ha sviluppato un dispositivo economico e portatile per il monitoraggio in situ del mercurio disciolto nelle acque, il quale permette di correlare in tempo reale la misurazione ottica della tonalità di colore dello xerogel funzionalizzato alla quantità di inquinante adsorbito.
Colorimetric Detection and Remediation of Mercury in Water: Novel Cellulose-Based Xerogels Functionalized with Porphyrin Receptors for Hg2+ Sensing and Adsorption
LUZZINI, DAVIDE
2023/2024
Abstract
Minamata Disaster rose the World’s awareness of mercury as water pollutant. Recently issued reports, made by the United Nations and the European Union environmental agencies, highlighted how mercury still poses today a huge threat to the environment and to the human population. After its release, this pollutant is free to travel, following the mercury cycle. It is estimated that 350.000 tons of mercury are stored into the oceanic waters, where it converted to methylmercury, its most toxic form. There, it undergoes through bio-absorption, bio-accumulation and bio-magnification processes by the aquatic biota, climbing up the food chain and reaching the humans populations through fish consumption, provoking the Minamata disease. An effective method for removing mercury from the environment involves capturing it with adsorbent materials, which are then safely removed and disposed of. My thesis work primarily focuses on the functionalization and testing of cellulose-based xerogels, made from renewable biomasses, functionalized with porphyrinic sensors, synthesized by the Sensor Group of “University of Rome – Tor Vergata”. These molecules are able to change colour upon the interaction with mercury ions, giving to the xerogels the properties of a colorimetric sensor. We optimized the formulation following the safe-by-design principles, improving the eco-compatibility of the material utilizing a more efficient and less eco-toxic cross-linker, such as the bPEI 1.8 kDa. The produced materials were then characterized using NMR, FTIR and SEM, while their adsorption and sensing abilities were tested. The results pointed out that the xerogels made with bPEI 1.8 kDa were the most promising ones, able to reach 90% of mercury mass adsorption and allowing its detection at concentrations lower than 200 ppm. The Sensor Group has developed a cost-effective and highly portable optical sensing setup using commercially available equipment, allowing fast in-situ measurements, correlating the colour tone of this novel xerogels to the amount of mercury adsorbed. This approach offers a practical perspective for real-time monitoring of mercury levels through simple optical measurements.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Luzzini_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
4.37 MB
Formato
Adobe PDF
|
4.37 MB | Adobe PDF | Visualizza/Apri |
2024_10_Luzzini_Executive Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227243