Converter-based generation, transmission systems and drives are key technologies in mod ern and future power grids. Advances in power electronics technology result in a sharp reduction in the cost of renewable energy resources. The converters, which can be connected as grid-forming, grid-following, and grid-supporting devices, play a crucial role in instability damping, supporting active and reactive power, condition monitoring, and regulating the grid voltage and frequency in both island and grid-connected modes. This project aims to design a finite-control-set model predictive control (FCS-MPC) strat egy for a grid-connected 2 level voltage source inverter (VSI) and study the power output. The project will take into account hard constraints on the amplitude of the input and output variables while also compensating for the unbalanced behavior of the system. Additionally, the transient and steady-state behavior of the system will be thoroughly investigated. To assess the validity and performance of the proposed approaches, simula tions will be conducted initially, followed by experimental tests at Smart Converter Lab, PowerLabDK.
La generazione di potenza, i sistemi di trasmissione e gli azionamenti elettrici basati su convertitori sono tecnologie chiave nei sistemi elettrici futuri. I progressi nella tecnologia dell’elettronica di potenza si traducono in una forte riduzione del costo delle risorse energetiche rinnovabili. I convertitori, che possono essere collegati come dispositivi grid-forming, grid-following e grid-supporting, svolgono un ruolo cruciale nell’attenuazione dell’instabilità, nel supporto della potenza attiva e reattiva, nel monitoraggio delle condizioni e nella regolazione della tensione e della frequenza della rete sia in funzionamento in isola che quando connessi in rete. Questo progetto mira a progettare una strategia finite-control-set model predictive control (FCS-MPC) per un voltage source inverter (VSI) a 2 livelli connesso alla rete e studiare la potenza in uscita. Il progetto terrà conto dei rigidi vincoli sull’ampiezza delle variabili di input e output, compensando al tempo stesso il comportamento sbilanciato del sistema. Inoltre, verrà studiato il comportamento transitorio e stazionario del sistema. Per valutare la validità e le prestazioni degli approcci proposti, verranno inizialmente condotte simulazioni, se guite da test sperimentali presso lo Smart Converter Lab, PowerLabDK.
Model predictive control of a grid-connected voltage source inverter
Pecile, Mattia
2023/2024
Abstract
Converter-based generation, transmission systems and drives are key technologies in mod ern and future power grids. Advances in power electronics technology result in a sharp reduction in the cost of renewable energy resources. The converters, which can be connected as grid-forming, grid-following, and grid-supporting devices, play a crucial role in instability damping, supporting active and reactive power, condition monitoring, and regulating the grid voltage and frequency in both island and grid-connected modes. This project aims to design a finite-control-set model predictive control (FCS-MPC) strat egy for a grid-connected 2 level voltage source inverter (VSI) and study the power output. The project will take into account hard constraints on the amplitude of the input and output variables while also compensating for the unbalanced behavior of the system. Additionally, the transient and steady-state behavior of the system will be thoroughly investigated. To assess the validity and performance of the proposed approaches, simula tions will be conducted initially, followed by experimental tests at Smart Converter Lab, PowerLabDK.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Pecile_Executive summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri |
2024_10_Pecile_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
22.09 MB
Formato
Adobe PDF
|
22.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227256