Spinal cord injury (SCI) is a devastating condition that disrupts the central nervous system, leading to severe motor, sensory, and autonomic dysfunctions. Moreover, due to the related additional medical complications, SCI impact on patients’ quality of life is so dramatic that an effective treatment is needed. However, current therapeutic strategies, while advanced, fail to fully restore function due to the complex pathophysiology, especially during the secondary injury stage, and the limited regenerative capacity of spinal cord tissue. From a preclinical perspective, biomaterial scaffolds implementation in molecular and cellular therapy could be an interesting option to overcome the treatment limitations. Therefore, this thesis addresses the critical need for innovative materials that support mixed therapy by developing a hydrogel scaffold designed specifically for SCI treatment. Deeper, the research focused on agarose and gelatin blends, as they are both biocompatible and biodegradable polymers, with agarose providing efficient mechanical support for cells and gelatin enhancing cell adhesion and proliferation. In addition, mild physical crosslinking methods were employed to maintain the integrity of the polymers, which is crucial for supporting cellular activities, and avoid the potential adverse effects associated with chemical crosslinking. Through rheological and swelling assessments, the optimal agarose-gelatin hydrogel formulation was determined, ensuring its capability to effectively fill lesion cavities and support rapid healing. Additionally, advanced characterization techniques, including Scanning Electron Microscopy (SEM) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, were utilized to elucidate the scaffold's microstructure and the chemical interaction between the polymers forming the three-dimensional network. Release tests with different tracers were carried out to investigate the molecule delivery ability of the hydrogel, while bioavailability tests were developed to determine the scaffold's efficacy in cell loading and proliferation.
La lesione del midollo spinale (LMS) è una condizione devastante che interrompe il sistema nervoso centrale, portando a gravi disfunzioni motorie, sensoriali e autonome. Inoltre, a causa delle complicazioni mediche aggiuntive ad essa connesse, l’impatto della LMS sulla qualità della vita dei pazienti è così drammatica che un trattamento efficace è necessario. Tuttavia, le strategie terapeutiche attuali, sebbene avanzate, non sono in grado di ristabilire completamente la funzionalità a causa della complessa patofisiologia, specialmente durante la seconda fase dell’infortunio, e della limitata capacità rigenerativa del tessuto del midollo spinale. Da un punto di vista preclinico, l’introduzione di biomateriali come supporti per terapie molecolari e cellulari può essere un’opzione interessante per superare le limitazioni del trattamento. Perciò, questa tesi affronta il bisogno critico dei materiali innovativi che supportino terapie combinate sviluppando uno scaffold di idrogel progettato specificatamente per il trattamento della LMS. Più nel dettaglio, questa ricerca concentra sull’uso di miscele di agarosio e gelatina, entrambi polimeri biocompatibili e biodegradabili poiché l'agarosio fornisce un supporto meccanico efficiente per le cellule e la gelatina migliora l'adesione e la proliferazione cellulare. Inoltre, metodi di reticolazione fisica sono stati utilizzati per mantenere l’integrità dei polimeri, cruciale per il supporto delle attività cellulari, ed evitare potenziali effetti avversi associati alla reticolazione chimica. Mediante prove reologiche e di swelling, la formulazione ottimale di idrogel agarosio-gelatina è stata determinata, assicurando la sua capacità di riempire efficacemente le cavità delle lesioni e supportare una guarigione rapida. In aggiunta, tecniche avanzate di caratterizzazione, quali microscopia a scansione elettronica (SEM) e spettroscopia a infrarossi con riflessione totale attenuata (ATR-FTIR), sono state utilizzate per capire la microstruttura dello scaffold e l'interazione chimica tra i polimeri che formano la matrice tridimensionale. Test di rilascio con diversi traccianti sono stati implementati per analizzare l’abilità di rilascio dell’idrogel, mentre test di biodisponibilità sono stati sviluppati per determinare l’efficacia dello scaffold nel caricamento e nella proliferazione cellulare.
Formulation and characterization of an agarose gelatin hydrogel for spinal cord regeneration
MORENO LARA, JOHAN SEBASTIAN
2023/2024
Abstract
Spinal cord injury (SCI) is a devastating condition that disrupts the central nervous system, leading to severe motor, sensory, and autonomic dysfunctions. Moreover, due to the related additional medical complications, SCI impact on patients’ quality of life is so dramatic that an effective treatment is needed. However, current therapeutic strategies, while advanced, fail to fully restore function due to the complex pathophysiology, especially during the secondary injury stage, and the limited regenerative capacity of spinal cord tissue. From a preclinical perspective, biomaterial scaffolds implementation in molecular and cellular therapy could be an interesting option to overcome the treatment limitations. Therefore, this thesis addresses the critical need for innovative materials that support mixed therapy by developing a hydrogel scaffold designed specifically for SCI treatment. Deeper, the research focused on agarose and gelatin blends, as they are both biocompatible and biodegradable polymers, with agarose providing efficient mechanical support for cells and gelatin enhancing cell adhesion and proliferation. In addition, mild physical crosslinking methods were employed to maintain the integrity of the polymers, which is crucial for supporting cellular activities, and avoid the potential adverse effects associated with chemical crosslinking. Through rheological and swelling assessments, the optimal agarose-gelatin hydrogel formulation was determined, ensuring its capability to effectively fill lesion cavities and support rapid healing. Additionally, advanced characterization techniques, including Scanning Electron Microscopy (SEM) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, were utilized to elucidate the scaffold's microstructure and the chemical interaction between the polymers forming the three-dimensional network. Release tests with different tracers were carried out to investigate the molecule delivery ability of the hydrogel, while bioavailability tests were developed to determine the scaffold's efficacy in cell loading and proliferation.File | Dimensione | Formato | |
---|---|---|---|
2024_10_MorenoLara_Tesi.pdf
accessibile in internet per tutti
Dimensione
4.92 MB
Formato
Adobe PDF
|
4.92 MB | Adobe PDF | Visualizza/Apri |
2024_10_MorenoLara_Executive summary.pdf
accessibile in internet per tutti
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227301