The purpose of this work is to develop and characterize fully bio-based epoxy vitrimeric systems based on modified Kraft lignin (KL) for use as high-performance thermosetting materials. A bio-based epoxy resin from algae, namely phloroglucinol tris epoxy (PHTE), was reacted together with raw KL or chemically modified succynilated KL (SAn-KL) as curing agent. To implement the dynamic vitrimer behavior, zinc acetylacetonate catalyst Zn(Acac)₂ was inserted in the formulation to promote dynamic transesterification exchange reactions (DTER) at high temperature. Such DTER could be exploited in the systems thanks to the presence of both free -OH groups coming from raw and/or modified KL structure and ester bond belonging to the networks backbones created upon epoxy-carboxylic acid ring opening reaction. Different molar ratios of epoxy to carboxyl (COOH) groups were selected to study the property to structure behavior of such systems. Preliminary characterization (in terms of Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and gel content evaluations) were performed for both systems obtained with raw KL and SAn-KL as curing agent to study the effectiveness of the curing reaction, that was achieved for all the formulations. However, the systems obtained with raw KL proved to be too brittle for further characterizations. Overall, lignin modification through succinylation proved to be a good strategy to obtain stable and well cured samples. To comprehensive t assess the thermomechanical characteristics of such systems, the crosslinking density (v) as well the glass transition temperature (Tg) of the materials were studied by means of Dynamic Mechanical Thermal Analysis (DMTA). Experimental data showed that, with an increase in the lignin content, the shear modulus (G') values ranged from 52.1 MPa for the SAn-KL system having a molar ratio of epoxy to carboxyl groups equal to (1:1) to 90.8 MPa for the SAn-KL system with a ratio (1:1.2). The Tg ranged from 132 °C for SAn-KL (1:1) up to 146 °C for SAn-KL (1:1.6). These values increase with an increase in the SAn-KL content, which indicates an increase in the stiffness and thermal stability of the material with the insertion of modified lignin as curing agent. Moreover, such systems were tested as for vitrimeric features through stress relaxation tests at 180 °C . The system with a molar ratio (1:1.4) showed the fastest stress relaxation time — about 1977 seconds - which could be explained by the optimal balance between the v of the system and the amount of the inserted DTER catalyst. In addition, the possibility of repeated re-use and re-shape of the material was assessed through multiple thermoforming, showing the possibility of change the material shape up to 4 repeated thermal-cooling cycles without significant changes in properties. These results open up prospects for the development of new fully biobased vitrimeric materials based on modified lignin, which could be potentially exploited as high-performance smart systems in the automotive, construction and packaging industries, fulfilling the principles of circular economy and green chemistry.
Lo scopo di questo lavoro è quello di sviluppare e caratterizzare sistemi vitrimerici epossidici completamente bioderivati usando lignina Kraft (KL) come agente di reticolazione potenzialmente applicabili nell’ambito di materiali termoindurenti ad alte prestazioni. La lignina è stata modificata chimicamente tramite reazione di succinazione (SAn-KL) rilevandosi un componente chiave per l’ottenimento di sistemi stabili. Per implementare il comportamento dinamico dei sistemi vitrimerici ottenuti, lo zinco acetilacetonato Zn(Acac)₂ è stato inserito nella formulazione come catalizzatore grazie alla sua capacità di promuovere reazioni dinamiche di scambio di transesterificazione (DTER). Sono stati selezionati diversi rapporti molari di gruppi epossidici e carbossilici (COOH) per studiare l’influenza della struttura chimica sulle proprietà finali del materiale. I sistemi ottenuti sia con KL grezza e SAn-KL come agente indurente sono stati sottoposti ad una caratterizzazione preliminare (tramite spettroscopia infrarossa a trasformata di Fourier (FTIR), calorimetria a scansione differenziale (DSC), analisi termogravimetrica (TGA) e valutazioni del contenuto di gel) per studiare l'efficacia della reazione di indurimento, che è stata raggiunta per tutte le formulazioni. Tuttavia, i sistemi ottenuti con KL grezza si sono rivelati troppo fragili per ulteriori caratterizzazioni. Nel complesso, la modificazione della lignina attraverso la succinazione si è rivelata una buona strategia per ottenere campioni stabili e solidi. Per questi sistemi, le caratteristiche termomeccaniche in termini di densità di reticolazione e di temperatura di transizione vetrosa (Tg) sono stati studiate mediante analisi termica meccanica dinamica (DMTA). I dati sperimentali hanno mostrato che con un aumento del contenuto di SAn-KL, i valori del modulo di taglio (G') varia da 52.1 MPa per il sistema con un rapporto molare epossido:acido pari a (1:1) a 90.8 MPa per il sistema SAn-KL (1:1.2) mentre la Tg varia da 132 °C per SAn-KL (1:1) fino a 146 °C per SAn-KL (1:1.6). Un aumento del contenuto di SAn-KL nel network comporta un aumento della rigidità e della stabilità termica. Inoltre, le caratteristiche vitrimeriche di tali sistemi sono state valutate attraverso test di rilassamento degli sforzi a 180 °C. Il sistema SAn-KL (1: 1.4) si è dimostrato il migliore in termini di rilassamento, registrando un tempo di rilassamento di circa 1977 secondi; grazie all’ottenimento di un bilanciamento tra la densità di reticolazione (correlata al rapporto molare epossido:acido) e la quantità del catalizzatore DTER inserito. Inoltre, è stata dimostrata la possibilità di uso ripetuto e cambiamento di forma del materiale tramite termoformatura per 4 cicli ripetuti . I risultati ottenuti in questo lavoro aprono a nuove prospettive per lo sviluppo di materiali vitrimerici completamente bioderivati basati su lignina modificata, che potrebbero essere potenzialmente sfruttati come sistemi intelligenti ad alte prestazioni nei settori automobilistico, delle costruzioni e degli imballaggi.
Fully biobased epoxy vitrimers from modified Kraft lignin
LUKASHENKO, EGOR
2023/2024
Abstract
The purpose of this work is to develop and characterize fully bio-based epoxy vitrimeric systems based on modified Kraft lignin (KL) for use as high-performance thermosetting materials. A bio-based epoxy resin from algae, namely phloroglucinol tris epoxy (PHTE), was reacted together with raw KL or chemically modified succynilated KL (SAn-KL) as curing agent. To implement the dynamic vitrimer behavior, zinc acetylacetonate catalyst Zn(Acac)₂ was inserted in the formulation to promote dynamic transesterification exchange reactions (DTER) at high temperature. Such DTER could be exploited in the systems thanks to the presence of both free -OH groups coming from raw and/or modified KL structure and ester bond belonging to the networks backbones created upon epoxy-carboxylic acid ring opening reaction. Different molar ratios of epoxy to carboxyl (COOH) groups were selected to study the property to structure behavior of such systems. Preliminary characterization (in terms of Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and gel content evaluations) were performed for both systems obtained with raw KL and SAn-KL as curing agent to study the effectiveness of the curing reaction, that was achieved for all the formulations. However, the systems obtained with raw KL proved to be too brittle for further characterizations. Overall, lignin modification through succinylation proved to be a good strategy to obtain stable and well cured samples. To comprehensive t assess the thermomechanical characteristics of such systems, the crosslinking density (v) as well the glass transition temperature (Tg) of the materials were studied by means of Dynamic Mechanical Thermal Analysis (DMTA). Experimental data showed that, with an increase in the lignin content, the shear modulus (G') values ranged from 52.1 MPa for the SAn-KL system having a molar ratio of epoxy to carboxyl groups equal to (1:1) to 90.8 MPa for the SAn-KL system with a ratio (1:1.2). The Tg ranged from 132 °C for SAn-KL (1:1) up to 146 °C for SAn-KL (1:1.6). These values increase with an increase in the SAn-KL content, which indicates an increase in the stiffness and thermal stability of the material with the insertion of modified lignin as curing agent. Moreover, such systems were tested as for vitrimeric features through stress relaxation tests at 180 °C . The system with a molar ratio (1:1.4) showed the fastest stress relaxation time — about 1977 seconds - which could be explained by the optimal balance between the v of the system and the amount of the inserted DTER catalyst. In addition, the possibility of repeated re-use and re-shape of the material was assessed through multiple thermoforming, showing the possibility of change the material shape up to 4 repeated thermal-cooling cycles without significant changes in properties. These results open up prospects for the development of new fully biobased vitrimeric materials based on modified lignin, which could be potentially exploited as high-performance smart systems in the automotive, construction and packaging industries, fulfilling the principles of circular economy and green chemistry.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Egor Lukashenko.pdf
accessibile in internet per tutti
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri |
Executive summary_ Egor Lukashenko.pdf
accessibile in internet per tutti
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227308