This thesis explores the design and optimization of photobioreactor systems aimed at enhancing the growth of purple phototrophic bacteria (PPB) for developing innovative biotechnologies for wastewater treatment and resource recovery. The research investigates different operational conditions to improve biomass productivity and overall system efficiency. Current PPB technologies, particularly those based on continuously stirred tank reactors (CSTR), struggle with low biomass productivity and limited resource utilization. This highlights the need for research to optimize these systems for better performance and sustainability. The aim of this work is to optimize the operational conditions of CSTR for improved PPB growth by conducting experiments with varying hydraulic retention times (HRT) and organic loading rates (OLR). These experiments seek to identify the most effective conditions for maximizing biomass productivity. Key parameters such as settleability, growth rate and decay rate were studied experimentally to develop a robust mathematical model using AQUASIM software for simulating PPB growth and productivity. Additionally, a theoretical study was performed on a coupled membrane reactor system, leading to the development of a model based on the findings from the literature. This work aims to provide insights into how different reactor configurations can influence PPB growth and overall system efficiency. The experimental results indicated that the maximum PPB concentration observed was around 1.3 g TSS/L when HRT was 4 d and initial chemical oxygen demand concentration was 4500 mg/L. The productivity per day for this setup was also the highest amongst the three conditions tested. The experiments demonstrated that both HRT and OLR significantly impact the performance of the CSTR, with specific conditions identified that maximize PPB biomass productivity. Also, the theoretical study on the coupled membrane reactor suggested that this configuration could offer advantages in maintaining stable operational conditions and further enhancing productivity. However, the results for this system merely serve as a support to conduct experiments on this type of reactor. Future research should focus on exploring the scalability of PPB for industrial applications with the help of the model developed by AQUASIM. Additionally, studies on the long-term stability and economic feasibility of these optimized systems will be crucial for advancing their practical implementation.
Questa tesi esplora la progettazione e l'ottimizzazione di sistemi di fotobioreattori volti a migliorare la crescita dei batteri fototrofici purpurei (PPB) nell’ottica dello sviluppo di biotecnologie innovative per il trattamento delle acque reflue e il recupero delle risorse. La ricerca confronta diverse condizioni operative per migliorare la produttività della biomassa e l'efficienza complessiva del sistema. Le attuali tecnologie basate su PPB, in particolare i reattori completamente miscelati in continuo (CSTR), presentano difficoltà legate alla bassa produttività della biomassa e all'utilizzo limitato delle risorse. Ciò evidenzia la necessità di approfondimenti volti a ottimizzare questi sistemi per una migliore prestazione e sostenibilità. L'obiettivo di questo lavoro è individuare le condizioni operative migliori dei CSTR per stimolare la crescita dei PPB, conducendo esperimenti con tempi di ritenzione idraulica (HRT) e carichi organici (OLR) variabili. Questi esperimenti mirano a identificare le condizioni più efficaci per massimizzare la produttività della biomassa. Parametri chiave come la sedimentabilità, il tasso di crescita e il tasso di decadimento sono stati studiati sperimentalmente per sviluppare un modello matematico robusto utilizzando il software AQUASIM per simulare la crescita e la produttività dei PPB. Inoltre, è stato eseguito uno studio teorico su un sistema a reattore a membrana accoppiato, portando allo sviluppo di un modello basato sui risultati della letteratura. Questo lavoro mira a fornire approfondimenti su come diverse configurazioni di reattori possano influenzare la crescita dei PPB e l'efficienza complessiva del sistema. I risultati sperimentali hanno rilevato che la concentrazione massima di PPB osservata era di circa 1,3 g TSS/L quando l'HRT era di 4 giorni e la concentrazione iniziale di domanda chimica di ossigeno era di 4500 mg/L. La produttività giornaliera per questa configurazione era anche la più alta tra i tre esperimenti condotti. Gli esperimenti hanno dimostrato che sia l'HRT che l'OLR influiscono significativamente sulle prestazioni del CSTR, a fronte di specifiche condizioni in grado di massimizzano la produttività della biomassa dei PPB. Inoltre, lo studio teorico sul reattore a membrana accoppiato ha suggerito che questa configurazione potrebbe offrire vantaggi nel mantenere condizioni operative stabili e migliorare ulteriormente la produttività. Tuttavia, i risultati per questo sistema servono solo come supporto per condurre esperimenti su questo tipo di reattore. Le future ricerche dovrebbero concentrarsi sull'esplorazione della scalabilità dei PPB per applicazioni industriali con l'ausilio del modello sviluppato tramite AQUASIM. Inoltre, studi sulla stabilità a lungo termine e sulla fattibilità economica di questi sistemi ottimizzati saranno cruciali per il loro avanzamento pratico.
Experimental and Theoretical Approaches to Optimize Photobioreactors for Mixed Cultures of Purple Phototrophic Bacteria
Syed Umar Ahmed
2023/2024
Abstract
This thesis explores the design and optimization of photobioreactor systems aimed at enhancing the growth of purple phototrophic bacteria (PPB) for developing innovative biotechnologies for wastewater treatment and resource recovery. The research investigates different operational conditions to improve biomass productivity and overall system efficiency. Current PPB technologies, particularly those based on continuously stirred tank reactors (CSTR), struggle with low biomass productivity and limited resource utilization. This highlights the need for research to optimize these systems for better performance and sustainability. The aim of this work is to optimize the operational conditions of CSTR for improved PPB growth by conducting experiments with varying hydraulic retention times (HRT) and organic loading rates (OLR). These experiments seek to identify the most effective conditions for maximizing biomass productivity. Key parameters such as settleability, growth rate and decay rate were studied experimentally to develop a robust mathematical model using AQUASIM software for simulating PPB growth and productivity. Additionally, a theoretical study was performed on a coupled membrane reactor system, leading to the development of a model based on the findings from the literature. This work aims to provide insights into how different reactor configurations can influence PPB growth and overall system efficiency. The experimental results indicated that the maximum PPB concentration observed was around 1.3 g TSS/L when HRT was 4 d and initial chemical oxygen demand concentration was 4500 mg/L. The productivity per day for this setup was also the highest amongst the three conditions tested. The experiments demonstrated that both HRT and OLR significantly impact the performance of the CSTR, with specific conditions identified that maximize PPB biomass productivity. Also, the theoretical study on the coupled membrane reactor suggested that this configuration could offer advantages in maintaining stable operational conditions and further enhancing productivity. However, the results for this system merely serve as a support to conduct experiments on this type of reactor. Future research should focus on exploring the scalability of PPB for industrial applications with the help of the model developed by AQUASIM. Additionally, studies on the long-term stability and economic feasibility of these optimized systems will be crucial for advancing their practical implementation.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Ahmed.pdf
accessibile in internet per tutti a partire dal 18/09/2027
Descrizione: Manuscript
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227510