Whole organ tissue engineering offers a solution to organ shortage for transplantation; however, efficient vascular integration remains a challenge. Novel intestinal tissue engineering approaches aim to provide engineered revascularised constructs for treating intestinal pathologies such as short bowel syndrome. This work explores the use of human umbilical vein endothelial cells (HUVECs) and hu- man mesoangioblasts (MABs) to recreate functional vasculature in decellularized intestinal scaffolds. MABs and HUVECs were labeled with GFP and mCherry respectively and expanded in specific media. In angiogenesis assays, co-culturing MABs with HUVECs led to a more structured vascular network compared to HU- VECs alone, with significant differences observed in various parameters related to tube formation. These differences became even more pronounced with the addition of the gamma-secretase inhibitor DAPT, which significantly enhanced the stabil- ity of the vascular networks compared to both the co-culture without DAPT and the HUVEC-only condition. Rat intestines were decellularised and repopulated with HUVECs and MABs and cultured in a bioreactor for 7 days. The results demonstrated successful recellularisation of the intestinal scaffolds, with HUVECs and MABs effectively repopulating the vasculature and forming stable vascular networks within the tissue. This thesis project highlights the critical interaction between MABs and HUVECs in vascular development. MABs supported HU- VECs in forming stable and durable networks, while HUVECs influenced the fate of MABs towards a smooth muscle phenotype through NOTCH pathway activa- tion. This approach represents a novel method for generating vascularized organs with potential clinical implications.
L’impiego dell’ingegneria dei tessuti per la creazione di organi artificiali rappresenta una possibile soluzione alla carenza di organi destinati al trapianto; tuttavia, ottenere un’integrazione vascolare efficiente rimane una sfida significativa. Nuove strategie di ingegneria tissutale intestinale mirano a fornire costrutti rivascolarizzati progettati per trattare patologie intestinali come la sindrome dell’intestino corto. Questo lavoro esplora l’uso di cellule endoteliali della vena ombelicale umana (HUVEC) e mesoangioblasti umani (MAB) per ricreare una vascolatura funzionale in scaffold intestinali decellularizzati. I MAB e le HUVEC sono stati marcati rispettivamente con GFP e mCherry ed espansi in specifici terreni di coltura. La co-coltura dei MAB con le HUVEC nei saggi di angiogenesi ha portato alla formazione di una rete vascolare più strutturata rispetto alle sole HUVEC, con differenze significative osservate in vari parametri legati alla formazione delle reti. Tali differenze sono diventate ancora più evidenti con l’aggiunta dell’inibitore della gamma-secretasi DAPT, che ha migliorato notevolmente la stabilità delle reti vascolari rispetto sia alla co-coltura senza DAPT sia alla con- dizione di controllo con sole HUVEC. Gli intestini di ratto sono stati decellularizzati e ripopolati con HUVEC e MAB e coltivati in un bioreat- tore per 7 giorni. I risultati presentati in questo lavoro di tesi evidenziano l’interazione tra MAB e HUVEC nello sviluppo vascolare, dove i MAB hanno supportato le HUVEC nella formazione di reti stabili e durevoli, mentre le HUVEC hanno influenzato il destino dei MAB verso un fenotipo di muscolo liscio tramite l’attivazione del pathway NOTCH. Questo approccio rappresenta un metodo innovativo per generare organi vascolarizzati con potenziali implicazioni cliniche.
Mesoangioblasts promote vascularisation and smooth muscle formation in decellularised intestine scaffold
Casamassima, Carlotta
2023/2024
Abstract
Whole organ tissue engineering offers a solution to organ shortage for transplantation; however, efficient vascular integration remains a challenge. Novel intestinal tissue engineering approaches aim to provide engineered revascularised constructs for treating intestinal pathologies such as short bowel syndrome. This work explores the use of human umbilical vein endothelial cells (HUVECs) and hu- man mesoangioblasts (MABs) to recreate functional vasculature in decellularized intestinal scaffolds. MABs and HUVECs were labeled with GFP and mCherry respectively and expanded in specific media. In angiogenesis assays, co-culturing MABs with HUVECs led to a more structured vascular network compared to HU- VECs alone, with significant differences observed in various parameters related to tube formation. These differences became even more pronounced with the addition of the gamma-secretase inhibitor DAPT, which significantly enhanced the stabil- ity of the vascular networks compared to both the co-culture without DAPT and the HUVEC-only condition. Rat intestines were decellularised and repopulated with HUVECs and MABs and cultured in a bioreactor for 7 days. The results demonstrated successful recellularisation of the intestinal scaffolds, with HUVECs and MABs effectively repopulating the vasculature and forming stable vascular networks within the tissue. This thesis project highlights the critical interaction between MABs and HUVECs in vascular development. MABs supported HU- VECs in forming stable and durable networks, while HUVECs influenced the fate of MABs towards a smooth muscle phenotype through NOTCH pathway activa- tion. This approach represents a novel method for generating vascularized organs with potential clinical implications.File | Dimensione | Formato | |
---|---|---|---|
ExecutiveSummary_CarlottaCasamassima.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
948.57 kB
Formato
Adobe PDF
|
948.57 kB | Adobe PDF | Visualizza/Apri |
Thesis_CarlottaCasamassima.pdf
non accessibile
Descrizione: Thesis
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227547