Water contamination represents one of the major risks for the environment and human health. Among the several pollutants which need to be removed from industrial wastewater, organic dyes derived from textile industry deserve high attention. For this reason, the development of innovative, higher performing and low (eco)toxic materials, for water decontamination from dyes, following safe and sustainable by design (SSbD) criteria, is mandatory. Nanomaterials, having a higher and more reactive surface area, are considered a valuable option for the development of sorbent materials. In this context, cellulose nanofibers are suitable building blocks to produce nanostructured systems, with the added value of originating from renewable sources. Moreover, nanocellulose can undergo a regioselective oxidation, bearing carboxylic groups which can take part in cross-linking, if in the presence of proper reticulants. In the last decade, our research group developed a cellulose-based nanosponge obtained in the presence of branched polyethyleneimine (b-PEI) 25 kDa and citric acid as cross-linkers. While this material performs great in the removal of organic dyes, a partial ecotoxicity associated to the slow release of the polyamine was observed. In this work I report the synthesis of a new library of nanostructured materials starting from nanocellulose and different polyamine polymers (amino PEG 4 arms, amino PEG 8 arms and b-PEI 1.8 kDa), with the final aim to reduce the potential risk of release of toxic polymers, while possibly maintaining high performances. Among the different formulations, the one with b-PEI 1.8 kDa provided the best results in terms of adsorption performance at lower concentration. Even if at higher concentration the original formulation with b-PEI 25 kDa performs slightly better, b-PEI 1.8 kDa is generally safer, possibly leading to a more eco-safe formulation. Future developments will include the safety validation of our new formulation through in vivo tests on microbial and sea urchins.
La contaminazione delle acque rappresenta uno dei maggiori rischi per l’uomo e l’ambiente. Fra i vari contaminanti presenti nelle acque reflue industriali, i coloranti organici richiedono particolare attenzione. Ciò spinge allo sviluppo di materiali innovativi, più performanti e meno (eco)tossici per la decontaminazione delle acque da coloranti, seguendo l’approccio del “safe and sustainable by design (SSbD)”. I nanomateriali, avendo elevata area superficiale e reattività, sono considerati valide soluzioni per lo sviluppo di materiali sorbenti. In questo contesto, le nanofibre di cellulosa, ottenibili anche da biomassa di scarto, sono un materiale di partenza adatto alla produzione di sistemi nanostrutturati. Inoltre, la nanocellulosa può subire un‘ossidazione regioselettiva, esponendo gruppi carbossilici che possono prendere parte a processi di reticolazione, se in presenza di opportuni reticolanti. Nell’ultimo decennio, il nostro gruppo ha sviluppato una nanospugna a base cellulosica ottenuta in presenza di b-PEI 25 kDa ed acido citrico come reticolante. Se da un lato questo materiale ha manifestato elevate proprietà adsorbenti per la rimozione di coloranti organici, dall’altro è stata misurata una parziale ecotossicità associata ad un lento rilascio del polimero poliamminico . In questo lavoro riporto la sintesi di una nuova libreria di materiali nanostrutturati partendo da nanocellulosa e diversi polimeri poliamminici , con lo scopo finale di ridurre il rischio potenziale di rilascio di polimeri tossici, mantenendo possibilmente le elevate prestazioni in termini di bonifica. Tra le differenti formulazioni, quella con b-PEI 1.8 kDa ha restituito i migliori risultati in termine di prestazione di adsorbimento a basse concentrazioni. Anche se ad alte concentrazioni l’originale formulazione con b-PEI 25 kDa risulta essere più efficiente, va sottolineato come il b-PEI 1.8 kDa sia da considerarsi generalmente più sicuro, portando possibilmente ad una formulazione più ecosafe. Futuri sviluppi includeranno la validazione della sicurezza della nostra nuova formulazione attraverso test in vivo su microorganismi e ricci di mare.
Safer by design cellulose nanosponges for wastewater treatment
Longaretti, Roberto
2023/2024
Abstract
Water contamination represents one of the major risks for the environment and human health. Among the several pollutants which need to be removed from industrial wastewater, organic dyes derived from textile industry deserve high attention. For this reason, the development of innovative, higher performing and low (eco)toxic materials, for water decontamination from dyes, following safe and sustainable by design (SSbD) criteria, is mandatory. Nanomaterials, having a higher and more reactive surface area, are considered a valuable option for the development of sorbent materials. In this context, cellulose nanofibers are suitable building blocks to produce nanostructured systems, with the added value of originating from renewable sources. Moreover, nanocellulose can undergo a regioselective oxidation, bearing carboxylic groups which can take part in cross-linking, if in the presence of proper reticulants. In the last decade, our research group developed a cellulose-based nanosponge obtained in the presence of branched polyethyleneimine (b-PEI) 25 kDa and citric acid as cross-linkers. While this material performs great in the removal of organic dyes, a partial ecotoxicity associated to the slow release of the polyamine was observed. In this work I report the synthesis of a new library of nanostructured materials starting from nanocellulose and different polyamine polymers (amino PEG 4 arms, amino PEG 8 arms and b-PEI 1.8 kDa), with the final aim to reduce the potential risk of release of toxic polymers, while possibly maintaining high performances. Among the different formulations, the one with b-PEI 1.8 kDa provided the best results in terms of adsorption performance at lower concentration. Even if at higher concentration the original formulation with b-PEI 25 kDa performs slightly better, b-PEI 1.8 kDa is generally safer, possibly leading to a more eco-safe formulation. Future developments will include the safety validation of our new formulation through in vivo tests on microbial and sea urchins.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Longaretti_Tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
2024_10_Longaretti_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary della tesi
Dimensione
943.8 kB
Formato
Adobe PDF
|
943.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227577