This thesis’ main ambition is to recognize the degradation processes of the SOFCs developed by a DTU partner company, in order to allow the commercialization of miniaturized and portable stacks. Climate change has demonstrated the importance of the transition to sustainable energies, and SOFCs are a highly efficient and versatile kind of energy conversion device. The main goal of the project is to develop a product that can replace traditional internal combustion engines and that can offer an alternative to lithium-ion batteries in portable or remote applications. Before commercialization, challenges such as understanding the degradation mechanisms and the current issues of the prototype must be overcome to contain efficiency loss during operation and ensure the device's continuous operation for many hours. In this thesis previously collected data were analyzed, coming from the test of an initial prototype stack that underwent more than 1000 hours of durability testing. Initially, a current density of 0.5 A/cm² was applied, then it was decreased to 0.31 A/cm² as performance deteriorated. This analysis, together with images obtained through SEM, was useful for realizing a second version of the stack, which was tested for 700 hours at 0.5 A/cm² and then subjected to microscopic analysis. From the first test issues related to gas leaks emerged, along with excessive compression that caused mechanical stress to the cells. Additionally, symptoms of chromium poisoning were suspected during the test, and were confirmed later using EDS. The second stack showed similar gas leaks, while compression issues were overcome. Furthermore, new coatings on the interconnectors were tested to try to resolve the chromium poisoning issue. The second test proved to be more promising than the first, as the stack managed to withstand a current density of 0.50 A/cm² for many hours, showing a stable trend regarding the variation of voltage as well as ohmic and polarization resistances. Future tests will aim to further improve the design thanks to the collected data, and the experiments with CH4 and air at the anode will be conducted to test the partial combustion unit and the cells' resistance to this fuel.
Questa tesi si pone come obiettivo il riconoscimento dei principali meccanismi di degradazione delle SOFC sviluppate da un’azienda partner di DTU, al fine di rendere possibile la commercializzazione di stack miniaturizzate e trasportabili. Il cambiamento climatico ha sottolineato l'importanza della transizione verso fonti di energia sostenibili, e in tal senso le SOFC rappresentano una tipologia efficiente e versatile di dispositivi per la conversione energetica. L’ambizione principale del progetto consiste nello sviluppare un prodotto che possa sostituire i tradizionali motori a combustione, ponendosi come alternativa alle batterie agli ioni di litio in applicazioni portatili o site in luoghi remoti. Prima della commercializzazione, sarà necessario affrontare sfide quali la comprensione dei meccanismi di degradazione e delle attuali criticità del prototipo, al fine di contenere la perdita di efficienza durante il funzionamento per poter garantire il funzionamento del dispositivo per molte ore consecutive. In questa tesi sono stati elaborati i dati già raccolti in precedenza per un primo prototipo di stack sottoposto a più di 1000 ore di test di durabilità, in cui si sono applicati inizialmente 0.5 A/cm2 per poi scendere fino a 0.31 A/cm2 con il deteriorarsi delle prestazioni. Questa analisi, assieme alle immagini ottenute tramite SEM, ha contribuito alla realizzazione di una seconda versione dello stack, che è stato testato per 700 ore a 0.5 A/cm2 e poi sottoposto ad un’analisi al microscopio. Dal primo test sono emerse problematiche legate a perdite di gas congiuntamente ad un’eccessiva compressione che ha causato stress meccanici alle celle. Inoltre, durante il test si sospettavano sintomi da avvelenamento da cromo, confermati poi da EDS. Il secondo stack ha mostrato perdite di gas simili al precedente, mentre i problemi di compressione sono stati superati. Inoltre, nuovi coating degli interconnettori sono stati sperimentati per tentare di risolvere il problema dell’avvelenamento da cromo. Il secondo test si è dimostrato più promettente del primo, in quanto lo stack è riuscito a sopportare una densità di corrente di 0.50 A/cm2 per molte ore, mostrando una tendenza stabile per quanto riguarda la variazione della tensione e delle resistenze ohmiche e di polarizzazione. Con i futuri test si proverà a migliorare ulteriormente il design grazie ai dati raccolti, e verrà sperimentato il funzionamento con CH4 e aria all’anodo per testare l’unità di combustione parziale e la resistenza delle celle a questa alimentazione.
Evaluation of performance and durability of a transportable Solid Oxide Fuel Cell
BERTAGLIA, ENRICO
2023/2024
Abstract
This thesis’ main ambition is to recognize the degradation processes of the SOFCs developed by a DTU partner company, in order to allow the commercialization of miniaturized and portable stacks. Climate change has demonstrated the importance of the transition to sustainable energies, and SOFCs are a highly efficient and versatile kind of energy conversion device. The main goal of the project is to develop a product that can replace traditional internal combustion engines and that can offer an alternative to lithium-ion batteries in portable or remote applications. Before commercialization, challenges such as understanding the degradation mechanisms and the current issues of the prototype must be overcome to contain efficiency loss during operation and ensure the device's continuous operation for many hours. In this thesis previously collected data were analyzed, coming from the test of an initial prototype stack that underwent more than 1000 hours of durability testing. Initially, a current density of 0.5 A/cm² was applied, then it was decreased to 0.31 A/cm² as performance deteriorated. This analysis, together with images obtained through SEM, was useful for realizing a second version of the stack, which was tested for 700 hours at 0.5 A/cm² and then subjected to microscopic analysis. From the first test issues related to gas leaks emerged, along with excessive compression that caused mechanical stress to the cells. Additionally, symptoms of chromium poisoning were suspected during the test, and were confirmed later using EDS. The second stack showed similar gas leaks, while compression issues were overcome. Furthermore, new coatings on the interconnectors were tested to try to resolve the chromium poisoning issue. The second test proved to be more promising than the first, as the stack managed to withstand a current density of 0.50 A/cm² for many hours, showing a stable trend regarding the variation of voltage as well as ohmic and polarization resistances. Future tests will aim to further improve the design thanks to the collected data, and the experiments with CH4 and air at the anode will be conducted to test the partial combustion unit and the cells' resistance to this fuel.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Bertaglia_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
12.5 MB
Formato
Adobe PDF
|
12.5 MB | Adobe PDF | Visualizza/Apri |
2024_10_Bertaglia_Executive summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227583