Increasing power demands in data centers have led to widespread adoption of the Intermediate Bus Architecture (IBA), allowing the implementation of highly efficient Intermediate Bus Converters (IBCs) to step down the semi-regulated voltage to the point-of-load converters. While Switched Tank Converters offer high efficiency and power density, they face challenges related to the lack of output voltage regulation, mismatches between the resonant frequency of the tanks, and difficulties in current balancing between different phases. This work proposes a 48V:12V, 2kW Coupled-Inductor Switched Tank Converter with Sigma Regulation to address these issues. The converter implements a two-phase interleaved design with a triple feedback loop, including a novel current balancing circuit that improves equalization between the current carried by the sigma regulators and the output current of each phase. The coupled inductors guarantee a unique, fixed resonant frequency for each resonant tank, mitigating frequency mismatches. A small-signal model of the circuit is developed to analyze the behavior of the converter and the performance of the proposed control loop. A PCB implementation of the proposed converter has been developed and magnetically optimized employing FEM solvers. Extensive simulations conducted for this work verify the accuracy of the small-signal model and the effectiveness of the current balancing technique. The control loop achieves a high bandwidth of 50kHz for a 570kHz switching frequency, with a limited output voltage variation of dVout < 350mV and a settling time of tset = 50us with a load variation of 150A. Notably, the proposed converter reaches a maximum power density of 2.93kW/in^3, making it the state-of-the-art in high power density IBCs.
La crescente richiesta di potenza nei data centers ha portato all'adozione diffusa della Intermediate Bus Architecture (IBA), che consente l'implementazione di Intermediate Bus Converters (IBCs) ad alta efficienza per ridurre la tensione semi-regolata per i convertitori point-of-load. Sebbene gli Switched Tank Converter offrano alta efficienza e densità di potenza, presentano problematiche legate alla mancanza di regolazione della tensione d'uscita, discrepanze tra le frequenze di risonanza delle celle e difficoltà nel bilanciamento di corrente tra le varie fasi. Questa tesi propone uno Switched Tank Converter a Induttori Accoppiati da 48V:12V e 2kW con regolazione Sigma per affrontare questi problemi. Il convertitore implementa un design interleaved a due fasi con triplo anello di regolazione, che include un innovativo circuito di bilanciamento della corrente. Questo migliora il bilanciamento di corrente portata dai regolatori sigma e da ciascuna fase. L'uso degli induttori accoppiati garantisce un'unica frequenza di risonanza per ogni cella risonante, riducendo l'impatto delle discrepanze in frequenza. Inoltre, viene sviluppato un modello di piccolo segnale del circuito per analizzare il comportamento del convertitore e le prestazioni del loop di controllo implementato. Il convertitore proposto in questa tesi è stato sviluppato su tecnologia PCB e ottimizzato magneticamente utilizzando solver FEM. Simulazioni dettagliate del convertitore verificano il modello di piccolo segnale e il circuito di bilanciamento della corrente. L'anello di controllo raggiunge un'elevata banda di 50kHz con una frequenza di switching di 570kHz, una variazione della tensione d'uscita limitata a dVout < 350mV e un tempo di assestamento di tset = 50us con una variazione di carico di 150A. In particolare, il convertitore raggiunge una densità di potenza massima di 2.93kW/in^3, rendendolo lo stato dell'arte negli IBC ad alta densità di potenza.
A 2kW Coupled-Inductor Switched Tank Converter with Sigma regulation and current balancing circuit for 48V bus down-conversion.
PETRUZZELLI, FRANCESCO
2023/2024
Abstract
Increasing power demands in data centers have led to widespread adoption of the Intermediate Bus Architecture (IBA), allowing the implementation of highly efficient Intermediate Bus Converters (IBCs) to step down the semi-regulated voltage to the point-of-load converters. While Switched Tank Converters offer high efficiency and power density, they face challenges related to the lack of output voltage regulation, mismatches between the resonant frequency of the tanks, and difficulties in current balancing between different phases. This work proposes a 48V:12V, 2kW Coupled-Inductor Switched Tank Converter with Sigma Regulation to address these issues. The converter implements a two-phase interleaved design with a triple feedback loop, including a novel current balancing circuit that improves equalization between the current carried by the sigma regulators and the output current of each phase. The coupled inductors guarantee a unique, fixed resonant frequency for each resonant tank, mitigating frequency mismatches. A small-signal model of the circuit is developed to analyze the behavior of the converter and the performance of the proposed control loop. A PCB implementation of the proposed converter has been developed and magnetically optimized employing FEM solvers. Extensive simulations conducted for this work verify the accuracy of the small-signal model and the effectiveness of the current balancing technique. The control loop achieves a high bandwidth of 50kHz for a 570kHz switching frequency, with a limited output voltage variation of dVout < 350mV and a settling time of tset = 50us with a load variation of 150A. Notably, the proposed converter reaches a maximum power density of 2.93kW/in^3, making it the state-of-the-art in high power density IBCs.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Petruzzelli_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
2024_10_Petruzzelli_Tesi.pdf
non accessibile
Descrizione: Thesis
Dimensione
9.35 MB
Formato
Adobe PDF
|
9.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227622