Hydrogen is currently considered a promising energy vector to be used in order to reduce carbon emissions and limit the climate change. In this context of energetic transition, the COMET module Polymers4Hydrogen was a project related to the study of polymeric materials to be used in the hydrogen infrastructure. This PhD thesis was part of this major project, mainly focusing on the study of fracture behaviour of filled elastomers widely used in seals, O-rings, gaskets and hoses in the hydrogen system. These products are subjected to harsh conditions of temperature and pressure and, in case of high-pressure cycles, could undergo to what is commonly referred to as rapid gas decompression (RGD) failure. Several rubber compounds differing in the chemical composition (type of matrix, curing system, type and quantity of filler and plasticizing additives) were studied. A wide mechanical characterization was performed, focusing also on structure-properties correlations. The fracture toughness of the materials was evaluated in quasi-static conditions and then compared with the RGD resistance, obtained from tests performed on O-rings by company project partners. Mechanical tests were conducted in different loading conditions (uniaxial and equibiaxial tension and pure shear deformation conditions), with the aim to define constitutive equations to be used in finite element analysis. Since in literature there are several ways to evaluate rubber fracture toughness, an in-depth study was conducted by performing fracture tests in different loading conditions and by calculating several energetic parameters, by using analytical formulas or by exploiting finite element analysis. Global and local approaches have been used in the evaluation of fracture toughness. With the purpose of using these materials in components of the hydrogen infrastructure, the effects on the material mechanical behaviour of temperature, gas pressure and hydrogen exposure were analysed. For this purpose, tests at different temperature were conducted. Moreover, tests after hydrogen exposure or under pressurized hydrogen were performed. Rubber products in real applications are usually subjected to cyclic loading: if stretched, filled elastomers result to soften and this effect is usually recalled to as “Mullins effect”. Within this context, also for the materials studied in this thesis, to be used in hydrogen infrastructure, the effect of mechanical softening was evaluated. In literature works, this phenomenon is usually evaluated just in uniaxial tensile conditions and is reported to recover after a proper thermal treatment. In this thesis, the effect of mechanical softening on uniaxial tensile, pure shear and fracture response have been evaluated, both before and after an applied thermal treatment.
Attualmente l'idrogeno è considerato un promettente vettore energetico da utilizzare per ridurre le emissioni di carbonio e limitare il cambiamento climatico. In questo contesto di transizione energetica, il modulo COMET Polymers4Hydrogen è un progetto legato allo studio di materiali polimerici da utilizzare nell'infrastruttura dell'idrogeno. Questa tesi di dottorato è stata sviluppata nell’ambito di questo progetto, incentrata principalmente sullo studio del comportamento a frattura di elastomeri rinforzati con filler e ampiamente utilizzati in guarnizioni, O-ring e tubi nel sistema dell'idrogeno. Questi prodotti sono sottoposti a condizioni severe di temperatura e pressione e, in caso di cicli ad alta pressione, potrebbero subire quello che viene comunemente definito come cedimento per decompressione rapida del gas (RGD). Sono state studiate diverse mescole elastomeriche che differiscono per la composizione chimica (tipo di matrice, sistema di reticolazione, tipo e quantità di filler e additivi plastificanti). È stata eseguita un'ampia caratterizzazione meccanica, concentrandosi anche sulle correlazioni struttura-proprietà. La tenacità a frattura dei materiali è stata valutata in condizioni quasi statiche e poi confrontata con la resistenza alla RGD, ottenuta da test eseguiti su O-ring dai partner del progetto. Le prove meccaniche sono state condotte in diverse condizioni di carico (tensione uniassiale ed equibiassiale e pure shear), con l'obiettivo di definire equazioni costitutive da utilizzare nell'analisi agli elementi finiti. Poiché in letteratura esistono diversi modi per valutare la tenacità a frattura della gomma, è stato condotto uno studio approfondito eseguendo test di frattura in diverse condizioni di carico e calcolando diversi parametri energetici, utilizzando formule analitiche o sfruttando l'analisi agli elementi finiti. Nella valutazione della tenacità a frattura sono stati utilizzati approcci globali e locali. Allo scopo di utilizzare questi materiali nei componenti dell'infrastruttura dell'idrogeno, sono stati analizzati gli effetti sul comportamento meccanico del materiale della temperatura, della pressione del gas e dell'esposizione all'idrogeno. A tal fine, sono state condotte prove a diverse temperature. Inoltre, sono stati eseguiti test dopo l'esposizione all'idrogeno o in idrogeno pressurizzato. I prodotti in gomma nelle applicazioni reali sono solitamente sottoposti a carichi ciclici: se deformati, gli elastomeri caricati con filler subiscono un softening e questo effetto è solitamente chiamato “effetto Mullins”. In questo contesto, anche per i materiali studiati in questa tesi, da utilizzare nell’infrastruttura dell’idrogeno, è stato valutato l'effetto del softening meccanico. Nei lavori di letteratura, questo fenomeno è solitamente valutato solo in condizioni di trazione uniassiale e viene descritto come recuperabile dopo un adeguato trattamento termico. In questa tesi, è stato valutato l'effetto del softening meccanico sulla risposta a trazione uniassiale, pure shear e frattura, sia prima che dopo un trattamento termico applicato.
Rubber compounds for hydrogen applications: structure-properties correlation in the study of their fracture behaviour
Denora, Isabella
2023/2024
Abstract
Hydrogen is currently considered a promising energy vector to be used in order to reduce carbon emissions and limit the climate change. In this context of energetic transition, the COMET module Polymers4Hydrogen was a project related to the study of polymeric materials to be used in the hydrogen infrastructure. This PhD thesis was part of this major project, mainly focusing on the study of fracture behaviour of filled elastomers widely used in seals, O-rings, gaskets and hoses in the hydrogen system. These products are subjected to harsh conditions of temperature and pressure and, in case of high-pressure cycles, could undergo to what is commonly referred to as rapid gas decompression (RGD) failure. Several rubber compounds differing in the chemical composition (type of matrix, curing system, type and quantity of filler and plasticizing additives) were studied. A wide mechanical characterization was performed, focusing also on structure-properties correlations. The fracture toughness of the materials was evaluated in quasi-static conditions and then compared with the RGD resistance, obtained from tests performed on O-rings by company project partners. Mechanical tests were conducted in different loading conditions (uniaxial and equibiaxial tension and pure shear deformation conditions), with the aim to define constitutive equations to be used in finite element analysis. Since in literature there are several ways to evaluate rubber fracture toughness, an in-depth study was conducted by performing fracture tests in different loading conditions and by calculating several energetic parameters, by using analytical formulas or by exploiting finite element analysis. Global and local approaches have been used in the evaluation of fracture toughness. With the purpose of using these materials in components of the hydrogen infrastructure, the effects on the material mechanical behaviour of temperature, gas pressure and hydrogen exposure were analysed. For this purpose, tests at different temperature were conducted. Moreover, tests after hydrogen exposure or under pressurized hydrogen were performed. Rubber products in real applications are usually subjected to cyclic loading: if stretched, filled elastomers result to soften and this effect is usually recalled to as “Mullins effect”. Within this context, also for the materials studied in this thesis, to be used in hydrogen infrastructure, the effect of mechanical softening was evaluated. In literature works, this phenomenon is usually evaluated just in uniaxial tensile conditions and is reported to recover after a proper thermal treatment. In this thesis, the effect of mechanical softening on uniaxial tensile, pure shear and fracture response have been evaluated, both before and after an applied thermal treatment.File | Dimensione | Formato | |
---|---|---|---|
TESI_DENORA_rev.pdf
non accessibile
Descrizione: tesi
Dimensione
7.01 MB
Formato
Adobe PDF
|
7.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227624