This thesis focuses on the development of control strategies for the stabilization of Unmanned Aerial Vehicles (UAVs), specifically quadcopters, following high-speed aerial deployment. The Pelican quadcopter is the model used for the experiments, with the objective of enabling rapid deployment from a moving aircraft, such as for civil purposes during natural disasters. The control systems studied include the Lee Geometric Controller and its evolution, Sliding Mode Control (SMC), and two evolved hybrid control strategies: Hybrid Control and Gain-Scheduled Control. The control algorithms are tested in both ideal and realistic simulation environments. The simulations successfully demonstrated that UAVs could be effectively stabilized, balancing robustness and precision in various conditions. The Genetic Algorithm (GA) and brute force methods were employed for tuning control gains, ensuring optimal performance for the UAV’s stabilization in a highvelocity, dynamic environment.

Questa tesi si concentra sullo sviluppo di strategie di controllo per la stabilizzazione di veicoli aerei senza pilota (UAV), in particolare i quadricotteri, dopo il lancio aereo ad alta velocità. Il quadricottero Pelican è il modello utilizzato per gli esperimenti, con l’obiettivo di consentire un rapido dispiegamento da un aereo in movimento, ad esempio per scopi civili durante disastri naturali. I sistemi di controllo studiati includono il Lee Geometric Controller e la sua evoluzione, il Sliding Mode Control (SMC) e due strategie di controllo ibride evolute: Hybrid Control e Gain-Scheduled Control . Gli algoritmi di controllo sono stati testati in ambienti di simulazione sia ideali che reali. Le simulazioni hanno dimostrato con successo che gli UAV possono essere stabilizzati efficacemente, bilanciando robustezza e precisione in diverse condizioni. Gli algoritmi genetici (GA) e il metodo di forza bruta sono stati impiegati per la messa a punto dei guadagni di controllo, garantendo prestazioni ottimali per la stabilizzazione del UAV in un ambiente dinamico ad alta velocità.

Aero.Next: optimizing UAV control dynamics for enhanced stabilization in high-velocity aerial deployments

Giordano, Lorenzo
2023/2024

Abstract

This thesis focuses on the development of control strategies for the stabilization of Unmanned Aerial Vehicles (UAVs), specifically quadcopters, following high-speed aerial deployment. The Pelican quadcopter is the model used for the experiments, with the objective of enabling rapid deployment from a moving aircraft, such as for civil purposes during natural disasters. The control systems studied include the Lee Geometric Controller and its evolution, Sliding Mode Control (SMC), and two evolved hybrid control strategies: Hybrid Control and Gain-Scheduled Control. The control algorithms are tested in both ideal and realistic simulation environments. The simulations successfully demonstrated that UAVs could be effectively stabilized, balancing robustness and precision in various conditions. The Genetic Algorithm (GA) and brute force methods were employed for tuning control gains, ensuring optimal performance for the UAV’s stabilization in a highvelocity, dynamic environment.
Ventura, Rodrigo
ING - Scuola di Ingegneria Industriale e dell'Informazione
10-ott-2024
2023/2024
Questa tesi si concentra sullo sviluppo di strategie di controllo per la stabilizzazione di veicoli aerei senza pilota (UAV), in particolare i quadricotteri, dopo il lancio aereo ad alta velocità. Il quadricottero Pelican è il modello utilizzato per gli esperimenti, con l’obiettivo di consentire un rapido dispiegamento da un aereo in movimento, ad esempio per scopi civili durante disastri naturali. I sistemi di controllo studiati includono il Lee Geometric Controller e la sua evoluzione, il Sliding Mode Control (SMC) e due strategie di controllo ibride evolute: Hybrid Control e Gain-Scheduled Control . Gli algoritmi di controllo sono stati testati in ambienti di simulazione sia ideali che reali. Le simulazioni hanno dimostrato con successo che gli UAV possono essere stabilizzati efficacemente, bilanciando robustezza e precisione in diverse condizioni. Gli algoritmi genetici (GA) e il metodo di forza bruta sono stati impiegati per la messa a punto dei guadagni di controllo, garantendo prestazioni ottimali per la stabilizzazione del UAV in un ambiente dinamico ad alta velocità.
File allegati
File Dimensione Formato  
Master_Thesis_LG.pdf

accessibile in internet per tutti

Descrizione: master thesis
Dimensione 4.9 MB
Formato Adobe PDF
4.9 MB Adobe PDF Visualizza/Apri
Executive_Summary_LG.pdf

accessibile in internet per tutti

Descrizione: executive summary
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/227634