This thesis focuses on the development of a kinetic model for the cyclization reaction of lofexidine, a pharmaceutical compound used for the treatment of withdrawal symptoms. The reaction leads to the formation of the imidazoline ring (LFX-base) from the ester intermediate (LFX-1). The objective is to minimize the formation of dimer impurities during the process. The model was built using a large set of experimental data, covering a wide range of operating conditions to ensure robustness and reliability. The experimental trials included various deviations from the nominal conditions, demonstrating the model’s adaptability and making it a flexible tool for process optimization. The Dynochem® software was used for the construction of the model and simulation of the reactions, which enabled not only the description of the reaction kinetics but also simulations of system behaviour under various operating conditions, exploring the influence of parameters such as temperature and reagent concentration. This approach made it possible to obtain a predictive model capable of estimating yields and concentrations of various products and by-products, thus facilitating improvements in process efficiency. The data used for numerical fitting were primarily obtained from experiments conducted in a batch system using EasyMax reactors, which allow precise control of process parameters. For each experiment, the collected samples were analysed using high-performance liquid chromatography (HPLC), employing specific analytical methods to ensure accurate quantification of reaction products and residual reagents. The kinetic model developed in this thesis represents a robust and versatile tool for the synthesis of lofexidine. Its ability to adapt to various operating conditions makes it particularly useful for optimization on an industrial scale, reducing development times and improving the efficiency of the production process.
Questa tesi si concentra sullo sviluppo di un modello cinetico per la reazione di ciclizzazione della lofexidina, un composto farmaceutico utilizzato per il trattamento dei sintomi da astinenza. La reazione porta alla formazione dell'anello imidazolico (LFX-base) dall'intermedio estereo (LFX-1). L'obiettivo è minimizzare la formazione di impurità di dimero durante il processo. Il modello è stato costruito utilizzando un ampio set di dati sperimentali, coprendo una vasta gamma di condizioni operative per garantire robustezza e affidabilità. Le prove sperimentali hanno incluso varie deviazioni dalle condizioni nominali, dimostrando l'adattabilità del modello e rendendolo uno strumento flessibile per l'ottimizzazione del processo. Per la costruzione e la simulazione del modello si è utilizzato il software Dynochem®, attraverso il quale, è stato possibile non solo descrivere la cinetica della reazione, ma anche simulare il comportamento del sistema in condizioni operative diverse, esplorando l'influenza di vari parametri come la temperatura e la concentrazione dei reagenti. Questo approccio ha permesso di ottenere un modello predittivo, capace di stimare la resa e le concentrazioni dei vari prodotti e sottoprodotti, facilitando così il miglioramento dell’efficienza del processo. I dati utilizzati per il fitting numerico sono stati ottenuti principalmente attraverso esperimenti condotti in un sistema batch utilizzando reattori EasyMax, che permettono un controllo preciso dei parametri di processo. Per ogni esperimento, i campioni raccolti sono stati analizzati utilizzando la cromatografia liquida ad alta prestazione (HPLC), impiegando metodi analitici specifici per garantire una corretta quantificazione dei prodotti di reazione e dei reagenti residui. Il modello cinetico sviluppato in questa tesi rappresenta uno strumento robusto e versatile per la sintesi della lofexidina. La sua capacità di adattarsi a diverse condizioni operative lo rende particolarmente utile per l’ottimizzazione su scala industriale, riducendo i tempi di sviluppo e migliorando l'efficienza del processo produttivo.
Kinetic modelling of chemical reactions involved in the synthesis of an active pharmaceutical ingredient: determination of optimal operating parameters for industrial scale-up
Luchetta, Beatrice
2023/2024
Abstract
This thesis focuses on the development of a kinetic model for the cyclization reaction of lofexidine, a pharmaceutical compound used for the treatment of withdrawal symptoms. The reaction leads to the formation of the imidazoline ring (LFX-base) from the ester intermediate (LFX-1). The objective is to minimize the formation of dimer impurities during the process. The model was built using a large set of experimental data, covering a wide range of operating conditions to ensure robustness and reliability. The experimental trials included various deviations from the nominal conditions, demonstrating the model’s adaptability and making it a flexible tool for process optimization. The Dynochem® software was used for the construction of the model and simulation of the reactions, which enabled not only the description of the reaction kinetics but also simulations of system behaviour under various operating conditions, exploring the influence of parameters such as temperature and reagent concentration. This approach made it possible to obtain a predictive model capable of estimating yields and concentrations of various products and by-products, thus facilitating improvements in process efficiency. The data used for numerical fitting were primarily obtained from experiments conducted in a batch system using EasyMax reactors, which allow precise control of process parameters. For each experiment, the collected samples were analysed using high-performance liquid chromatography (HPLC), employing specific analytical methods to ensure accurate quantification of reaction products and residual reagents. The kinetic model developed in this thesis represents a robust and versatile tool for the synthesis of lofexidine. Its ability to adapt to various operating conditions makes it particularly useful for optimization on an industrial scale, reducing development times and improving the efficiency of the production process.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Luchetta_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
2024_10_Luchetta_Tesi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.58 MB
Formato
Adobe PDF
|
3.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227644