The increasing demand for energy in data centers, needs the development of new power architectures capable of providing the necessary energy more efficiently. In this scenario, the power distribution network becomes crucial as each computing device inside the rack has extremely tight volume and thermal constraints. The intermediate bus architecture emerges as an excellent candidate for this application, where a fixed ratio, high-efficiency intermediate bus converter (IBC) is cascaded to a fast voltage regulator. In this thesis, a new hybrid-resonant switched capacitor converter (SCC) architecture is presented where both high efficiency and high power densities are achieved combining a resonant SCC with a planar transformer. Compared to other state-of-the-art IBC architectures, an input-series output-parallel (ISOP) buck converter is incorporated into the structure to allow efficient output voltage regulation with minimum area overhead. The trasformer is designed using a matrix multitapped structure which offers severals advantages, such as reduced copper losses and leakage flux. The magnetic design has been thoroughly analyzed and optimized using FEM magnetic simulations. A prototype of the proposed intermediate bus architecture has been designed using a 3D stacking of two different PCBs; where the main IBC module is vertically connected using copper pillars to the ISOP converter. The PCB design is optimized to meet the area occupation required by the application standards of 1/16-brick, while achieving 990W maximum output power in the worst-case voltage conversion of 60-to-3.3V. Considering also the height of the PCB, the estimated state-of-the-art power density of 2.47kW/in3 is achieved.
La crescente richiesta di energia nei data center necessita lo sviluppo di nuove architetture in grado di fornire l’energia necessaria in modo più efficiente. In questo scenario, poiché ogni dispositivo di calcolo all’interno del rack ha vincoli estremamente rigidi di volume e temperatura, l’efficienza della rete di distribuzione della potenza diventa cruciale . L’Intermediate Bus Architecture (IBA) emerge come un eccellente candidato per questa applicazione, dove un Intermediate Bus Converter (IBC) ad alto rendimento e rapporto di conversione fisso, è concatenato a un regolatore di tensione a banda elevata. In questa tesi, viene presentata una nuova architettura ibrida basata su Switched Capacitor Converter (SCC) che combina un SCC risonante con un trasformatore planare per ottenere allo stesso tempo un’elevata efficienza e un’elevata densità di potenza. Rispetto ad altre architetture IBC all’avanguardia, il convertitore integra, attraverso una connes- sione input-series output-parallel (ISOP), un buck multifase nella struttura dello stage risonante, consentendo una regolazione efficiente della tensione di uscita mantenendo la minima occupazione di area. Il trasformatore è progettato utilizzando una struttura Matrix Multi Tapped Autotransformer (MMTA) che offre diversi vantaggi, come la riduzione delle perdite di conduzione e del flusso disperso. Il design magnetico è stato accuratamente analizzato e ottimizzato utilizzando simulazioni FEM. Un prototipo dell’IBC è stato progettato utilizzando uno stacking 3D di due PCB diverse; dove il modulo IBC principale è collegato verticalmente al convertitore ISOP. Il design del PCB è ottimizzato per soddisfare l’occupazione di area richiesta dagli standard applicativi di 1/16-brick, raggiungendo una potenza di uscita massima di 990W nel caso peggiore di conversione di tensione da 60 a 3.3V. Considerando anche l’altezza del PCB, si raggiunge la densità di potenza stimata di 2.47kW/in3, superiore all’attuale stato dell’arte.
Dual-phase magnetically coupled hybrid resonant switched tank converter for future data-center applications
DE SANTIS, MATTEO
2023/2024
Abstract
The increasing demand for energy in data centers, needs the development of new power architectures capable of providing the necessary energy more efficiently. In this scenario, the power distribution network becomes crucial as each computing device inside the rack has extremely tight volume and thermal constraints. The intermediate bus architecture emerges as an excellent candidate for this application, where a fixed ratio, high-efficiency intermediate bus converter (IBC) is cascaded to a fast voltage regulator. In this thesis, a new hybrid-resonant switched capacitor converter (SCC) architecture is presented where both high efficiency and high power densities are achieved combining a resonant SCC with a planar transformer. Compared to other state-of-the-art IBC architectures, an input-series output-parallel (ISOP) buck converter is incorporated into the structure to allow efficient output voltage regulation with minimum area overhead. The trasformer is designed using a matrix multitapped structure which offers severals advantages, such as reduced copper losses and leakage flux. The magnetic design has been thoroughly analyzed and optimized using FEM magnetic simulations. A prototype of the proposed intermediate bus architecture has been designed using a 3D stacking of two different PCBs; where the main IBC module is vertically connected using copper pillars to the ISOP converter. The PCB design is optimized to meet the area occupation required by the application standards of 1/16-brick, while achieving 990W maximum output power in the worst-case voltage conversion of 60-to-3.3V. Considering also the height of the PCB, the estimated state-of-the-art power density of 2.47kW/in3 is achieved.File | Dimensione | Formato | |
---|---|---|---|
2024_10_De_Santis_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
29.55 MB
Formato
Adobe PDF
|
29.55 MB | Adobe PDF | Visualizza/Apri |
2024_10_De_Santis_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227648