Cenobamate (CNB) is an anti-epileptic drug commonly used alongside other anti-seizure medications (ASMs) in combined therapy , which can be optimally managed through the application of non-invasive Therapeutic Drug Monitoring (TDM) techniques (e.g., Raman Spectroscopy). The existing literature indicates that Cenobamate has not yet been char- acterized through Raman spectroscopy or SERS. This thesis work employs computational methods to examine the molecular and vibrational properties of Cenobamate, to promote potential applications of Raman Spectroscopy in the analysis of CNB, thus addressing a gap in current knowledge. Firstly, I performed a metadynamics on Cenamate with the CREST code, which generated the most stable conformers based on a statistical approach. These conformers were then characterized using an original nomenclature and the definition of five dihedral angles, which served as the basis for the subsequent structural analyses. Starting from the large number of generated conformers, I created two distinct datasets and performed a Principal Component Analysis (PCA) on them. This allowed to visualize and identify the relationships between the designated dihedral angles and the energy landscape of Cenobamate. A customized force field tailored to the molecular structure of Cenobamate was crafted with the Q-Force tool and its robustness tested in Molecular Dynamics (MD) Simulations for subsequent use in the GROMACS code. I submitted the most stable conformers previously identified to MD simulations in an aqueous environment. This allows to define the characteristic Raman spectroscopy and possible SERS fingerprints of Cenobamate. Furthermore, by focusing on any irregularities in the dihedral angles of the molecule observed during the simulations, the interactions between Cenobamate and water are examined in detail to elucidate their role. In the final part of the thesis, simulated Raman spectra of the most stable conformers of Cenobamate are displayed and the characteristic normal modes assigned, with the identification of the most distinctive ones.
Il Cenobamate (CNB) è un farmaco antiepilettico comunemente utilizzato insieme ad al- tri farmaci anticonvulsivanti in una terapia combinata, che può essere gestita in modo ottimale tramite l’applicazione di Therapeutic Drug Monitoring (TDM) (ad esempio, la spettroscopia Raman). La letteratura esistente indica che il Cenobamate non è ancora stato caratterizzato mediante spettroscopia Raman o SERS. Questa tesi di laurea magis- trale impiega metodi computazionali per esaminare le proprietà molecolari e vibrazionali del Cenobamate, al fine di promuovere possibili applicazione future della spettroscopia Raman nell’analisi di CNB, colmando così una lacuna nell’attuale conoscenza del far- maco. Per cominciare, ho eseguito una metadinamica su Cenobamate con il codice CREST, che ha generato i conformeri più stabili sulla base di un approccio statistico. Questi conformeri sono stati poi caratterizzati utilizzando una nomenclatura originale e la definizione di cinque angoli diedri, che hanno costituito la base per le analisi strutturali svolte in seguito. A partire dal gran numero di conformeri generati, ho creato due distinti dataset e ho eseguito una Principal Component Analysis (PCA) su di essi. Ciò ha permesso di visual- izzare e identificare le relazioni tra gli angoli diedri designati e la superficie energetica del Cenobamate. Un force-field personalizzato e adattato alla struttura molecolare del Cenobamate è stato creato tramite il software Q-Force e la sua affidabilità è stata testata in simulazioni di di- namica molecolare (MD) per il successivo impiego nel codice GROMACS. Ho sottoposto i conformeri più stabili precedentemente identificati a simulazioni di MD in ambiente acquoso. Ciò consente di definire le caratteristiche spettroscopiche Raman e i possibili fingerprints SERS del Cenobamate. Inoltre, ispezionando eventuali irregolarità negli an- goli diedri della molecola osservate durante le simulazioni, le interazioni tra Cenobamate e l’acqua vengono esaminate nel dettaglio per chiarirne il ruolo. Nella parte finale della tesi, vengono presentate simulazioni degli spettri Raman dei con- formeri più stabili del Cenobamat,e vengono assegnati i caratteristici modi normali di vibrazione, insieme all’identificazione di quelli più peculiari.
Molecular and vibrational structure of Cenobamate investigated by MD and DFT
BENEDETTO, FABIO
2023/2024
Abstract
Cenobamate (CNB) is an anti-epileptic drug commonly used alongside other anti-seizure medications (ASMs) in combined therapy , which can be optimally managed through the application of non-invasive Therapeutic Drug Monitoring (TDM) techniques (e.g., Raman Spectroscopy). The existing literature indicates that Cenobamate has not yet been char- acterized through Raman spectroscopy or SERS. This thesis work employs computational methods to examine the molecular and vibrational properties of Cenobamate, to promote potential applications of Raman Spectroscopy in the analysis of CNB, thus addressing a gap in current knowledge. Firstly, I performed a metadynamics on Cenamate with the CREST code, which generated the most stable conformers based on a statistical approach. These conformers were then characterized using an original nomenclature and the definition of five dihedral angles, which served as the basis for the subsequent structural analyses. Starting from the large number of generated conformers, I created two distinct datasets and performed a Principal Component Analysis (PCA) on them. This allowed to visualize and identify the relationships between the designated dihedral angles and the energy landscape of Cenobamate. A customized force field tailored to the molecular structure of Cenobamate was crafted with the Q-Force tool and its robustness tested in Molecular Dynamics (MD) Simulations for subsequent use in the GROMACS code. I submitted the most stable conformers previously identified to MD simulations in an aqueous environment. This allows to define the characteristic Raman spectroscopy and possible SERS fingerprints of Cenobamate. Furthermore, by focusing on any irregularities in the dihedral angles of the molecule observed during the simulations, the interactions between Cenobamate and water are examined in detail to elucidate their role. In the final part of the thesis, simulated Raman spectra of the most stable conformers of Cenobamate are displayed and the characteristic normal modes assigned, with the identification of the most distinctive ones.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Benedetto_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
6.31 MB
Formato
Adobe PDF
|
6.31 MB | Adobe PDF | Visualizza/Apri |
2024_10_Benedetto_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
61.63 MB
Formato
Adobe PDF
|
61.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227655