Since the launch of Sputnik 1 in 1957, the Low Earth Orbit (LEO) region has proven beneficial for scientific, commercial, and defense missions. Despite efforts to ensure the sustainable use of this environment, the accelerated growth in launched objects over recent years now poses significant risks to both current and future space operations. Without intervention, the future space environment is predicted to be dominated by debris fragments generated through collisions between objects. This could lead to a self-sustaining debris population, even in the absence of new launches. To mitigate this scenario, various measures have been proposed and partially implemented; however, compliance levels have not met the targets established decades ago. In this context, the concept of a metric known as "Space environment capacity" has been proposed by several studies as a tool for assessing the environment’s capacity to support safe space operations. This metric is intended to function within the framework of space traffic management. The present work aims to implement and further explore the definition and application of Space environment capacity. To realize this metric, a simplified evolutionary model has been developed. It is a multi-bin source and sink model governed by a set of first-order differential equations, accounting for the injection and removal of objects in each altitude bin. It incorporates key factors such as mutual collisions, atmospheric drag decay, launches, and post-mission disposal. Additionally, a semi-analytical orbit propagator, derived from King-Hele’s theory on orbit contraction due to drag , has been implemented to predict the trajectory of individual objects and compute the debris index over time. The debris index used is the Criticality of Spacecraft Index (CSI), which serves as a basis for evaluating space environment capacity under various scenarios. The results are compared with other available studies to provide further insights into the application of this metric.
Dal lancio dello Sputnik 1 nel 1957, la regione delle orbite terrestri basse (LEO) è diventata una risorsa fondamentale per missioni scientifiche, commerciali e di difesa. Nonostante gli sforzi degli ultimi decenni per garantire un utilizzo sostenibile dell’ambiente spaziale, la crescita accelerata del numero di oggetti lanciati negli ultimi anni ha aumentato significativamente i rischi per le missioni spaziali presenti e future. Senza interventi adeguati, si prevede che l’ambiente orbitale in futuro sarà dominato da frammenti generati da collisioni tra oggetti in orbita, portando alla formazione di una popolazione di detriti autosufficiente, anche in assenza di ulteriori lanci. Per evitare questo scenario, sono state proposte e adottate diverse misure di mitigazione, ma il livello di conformità a tali misure non ha ancora raggiunto gli obiettivi fissati decenni fa. In questo contesto, diversi studi hanno introdotto il concetto di "Capacità dell’Ambiente Spaziale", una metrica per valutare la capacità dell’ambiente di garantire operazioni spaziali sicure. Questa metrica va applicata nel quadro della gestione del traffico spaziale. Il presente lavoro si propone di implementare e analizzare l’applicazione del concetto di Capacità dell’Ambiente Spaziale. Per calcolare la capacità, è stato sviluppato un modello evolutivo costituito da un sistema multi-bin di sorgenti e pozzi, governato da un insieme di equazioni differenziali del primo ordine che considerano l’inserimento e la rimozione di oggetti in ogni intervallo di altitudine. Vengono considerati fattori essenziali come le collisioni tra oggetti, il decadimento dovuto alla resistenza atmosferica, i lanci e la disposizione dei satelliti a fine missione. Inoltre, è stato implementato un propagatore orbitale semi-analitico basato sulla teoria di King- Hele, sulla contrazione delle orbite dovuta all’attrito atmosferico, al fine di prevedere la traiettoria degli oggetti e calcolare nel tempo l’indice di criticità degli ogetti. L’indice di criticità utilizzato è il Criticality of Spacecraft Index (CSI), adottato per stimare la capacità dell’ambiente spaziale in vari scenari. I risultati ottenuti sono stati confrontati con altri studi presenti in letteratura per fornire ulteriori dati e contribuire alla discussione sul tema.
Investigation of the Space environment capacity through the Criticality of Spacecraft Index
Del Bono, Alessandro
2023/2024
Abstract
Since the launch of Sputnik 1 in 1957, the Low Earth Orbit (LEO) region has proven beneficial for scientific, commercial, and defense missions. Despite efforts to ensure the sustainable use of this environment, the accelerated growth in launched objects over recent years now poses significant risks to both current and future space operations. Without intervention, the future space environment is predicted to be dominated by debris fragments generated through collisions between objects. This could lead to a self-sustaining debris population, even in the absence of new launches. To mitigate this scenario, various measures have been proposed and partially implemented; however, compliance levels have not met the targets established decades ago. In this context, the concept of a metric known as "Space environment capacity" has been proposed by several studies as a tool for assessing the environment’s capacity to support safe space operations. This metric is intended to function within the framework of space traffic management. The present work aims to implement and further explore the definition and application of Space environment capacity. To realize this metric, a simplified evolutionary model has been developed. It is a multi-bin source and sink model governed by a set of first-order differential equations, accounting for the injection and removal of objects in each altitude bin. It incorporates key factors such as mutual collisions, atmospheric drag decay, launches, and post-mission disposal. Additionally, a semi-analytical orbit propagator, derived from King-Hele’s theory on orbit contraction due to drag , has been implemented to predict the trajectory of individual objects and compute the debris index over time. The debris index used is the Criticality of Spacecraft Index (CSI), which serves as a basis for evaluating space environment capacity under various scenarios. The results are compared with other available studies to provide further insights into the application of this metric.File | Dimensione | Formato | |
---|---|---|---|
2024_11_DelBono_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
5.25 MB
Formato
Adobe PDF
|
5.25 MB | Adobe PDF | Visualizza/Apri |
2024_11_DelBono_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227680