Atherosclerosis is a chronic inflammatory disease that manifests itself with the formation of lipid plaques (atheromas) in the inner layer of the arteries of medium and large caliber, especially in the intimate tunica. In addition to being linked to risk factors such as smoking, diabetes, obesity and hypertension, the pathology is closely associated with an altered blood flow, which acts with a multidirectional dynamic on cells. Several studies have shown that this alteration of flow, especially in arterial areas with complex geometries such as bifurcations and curvatures, plays a decisive role in the onset of atherosclerosis. Although several devices have been developed to examine the relationship between haemodynamic stress and atrial formation, none of them are yet capable of faithfully reproducing a multidirectional flow or analysing complex tissue samples. The system described in this thesis, called Multidirectional Shear Stress Bioreactor plus (MSSB+), is an innovative device designed to overcome existing limitations. The MSSB+ allows to examine in a more detailed way the relation between the onset of the disease and the multi directionality of the flow, thanks to the use, within a specific geometry, of flows characterized by time-varying flows. The main objective of this work is to optimize the device from a geometry point of view. In particular, a new version of the system was designed and implemented, capable of increasing the homogeneity relative to the module and phase of the Wall Shear Stress (WSS) vector within a region of the device where the housing system will be placed. In order to verify the validity of the hypotheses arising during the analysis of the problem, in silico tests were conducted. In addition, the subsequent implementation of the Multidirectional Shear Stress Bioreactor plus (MSSB+), and the inclusion of this in a special experimental set up has allowed a validation process to be carried out which can assess the correct functioning of the system implemented, both in terms of simultaneous control of the pumps and of checking the dynamic hydraulic seal of the system. Finally, this thesis has structured an algorithm of Particle Tracking, which could be used in future works to experimentally evaluate the correct reproduction of a precise stress pattern within the device.
L'aterosclerosi è una malattia infiammatoria cronico-degenerativa che si manifesta con la formazione di placche lipidiche (ateromi) nello strato interno delle arterie di medio e grosso calibro, in particolare nella tunica intima. Oltre a essere legata a fattori di rischio come fumo, diabete, obesità e ipertensione, la patologia è strettamente associata a un flusso sanguigno alterato, che agisce con una dinamica multidirezionale sulle cellule. Diversi studi hanno evidenziato come questa alterazione del flusso, specialmente in aree arteriose con geometrie complesse come biforcazioni e curvature, svolga un ruolo determinante nell'insorgenza dell'aterosclerosi. Sebbene siano stati sviluppati vari dispositivi per esaminare la relazione tra sollecitazioni emodinamiche e formazione di ateromi, nessuno di essi è ancora capace di riprodurre fedelmente un flusso multidirezionale né di analizzare campioni tissutali complessi. Il sistema descritto in questa tesi, chiamato Multidirectional Shear Stress Bioreactor plus (MSSB+), rappresenta un dispositivo innovativo progettato per superare le limitazioni esistenti. L'MSSB+ consente di esaminare in modo più approfondito la relazione tra l'insorgenza della patologia e la multi direzionalità del flusso, grazie all’impiego, all’interno di un’apposita geometria, di flussi caratterizzati da portate variabili nel tempo. L’obiettivo principale del presente lavoro riguarda l’ottimizzazione del dispositivo da un punto di vista della geometria. In particolare, è stata progettata e realizzata una nuova versione del sistema, capace di incrementare l’omogeneità relativa al modulo e alla fase del vettore Wall Shear Stress (WSS) all’interno di una regione del dispositivo nella quale verrà posto il sistema di alloggiamento. Al fine si verificare la validità delle ipotesi nate durante l’analisi del problema sono stati condotti dei test in silico. Inoltre, la successiva realizzazione del Multidirectional Shear Stress Bioreactor plus (MSSB+), e l’inserimento dello stesso all’interno di un apposito set up sperimentale ha consentito di effettuare un processo di validazione in grado di valutare il corretto funzionamento del sistema realizzato, sia in termini di controllo simultaneo delle pompe che di verifica della tenuta idraulica dinamica del sistema. Infine il presente lavoro di tesi ha strutturato un algoritmo di Particle Tracking, che potrebbe essere utilizzato nei lavori futuri al fine di valutare sperimentalmente la corretta riproduzione di un preciso pattern di sollecitazione all’interno del dispositivo.
Analisi e sviluppo di un sistema di coltura dinamico per l'applicazione di stimoli idrodinamici a un campione biologico
Sabatini, Antonio
2023/2024
Abstract
Atherosclerosis is a chronic inflammatory disease that manifests itself with the formation of lipid plaques (atheromas) in the inner layer of the arteries of medium and large caliber, especially in the intimate tunica. In addition to being linked to risk factors such as smoking, diabetes, obesity and hypertension, the pathology is closely associated with an altered blood flow, which acts with a multidirectional dynamic on cells. Several studies have shown that this alteration of flow, especially in arterial areas with complex geometries such as bifurcations and curvatures, plays a decisive role in the onset of atherosclerosis. Although several devices have been developed to examine the relationship between haemodynamic stress and atrial formation, none of them are yet capable of faithfully reproducing a multidirectional flow or analysing complex tissue samples. The system described in this thesis, called Multidirectional Shear Stress Bioreactor plus (MSSB+), is an innovative device designed to overcome existing limitations. The MSSB+ allows to examine in a more detailed way the relation between the onset of the disease and the multi directionality of the flow, thanks to the use, within a specific geometry, of flows characterized by time-varying flows. The main objective of this work is to optimize the device from a geometry point of view. In particular, a new version of the system was designed and implemented, capable of increasing the homogeneity relative to the module and phase of the Wall Shear Stress (WSS) vector within a region of the device where the housing system will be placed. In order to verify the validity of the hypotheses arising during the analysis of the problem, in silico tests were conducted. In addition, the subsequent implementation of the Multidirectional Shear Stress Bioreactor plus (MSSB+), and the inclusion of this in a special experimental set up has allowed a validation process to be carried out which can assess the correct functioning of the system implemented, both in terms of simultaneous control of the pumps and of checking the dynamic hydraulic seal of the system. Finally, this thesis has structured an algorithm of Particle Tracking, which could be used in future works to experimentally evaluate the correct reproduction of a precise stress pattern within the device.File | Dimensione | Formato | |
---|---|---|---|
Tesi Finale.pdf
non accessibile
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227706