The design of error-correcting codes for short information blocks is becoming an increas- ingly relevant research area, driven by the demand for efficient transmission in emerging wireless applications. These include machine-type communications, smart metering net- works, the Internet of Things, remote command links, and messaging services, all of which require a reliable and efficient transmission of small data units. For short infor- mation blocks in coherent communication systems, it has been proved that convolutional codes are able to approach performance bounds. However, synchronization using known symbols (pilot symbols) adds significant overhead when dealing with short packets. In this Master’s thesis we try to overcome this limit by analyzing convolutional codes over noncoherent channels, focusing on the use of noncoherent receivers that eliminate the need for pilot symbols. We examine this approach with both BPSK and QPSK modula- tion schemes, evaluating the performance of zero-tail and tail-biting convolutional codes with different memory values. Finally, we assess the complexity and performance of the proposed solutions, comparing them to known approximations of the finite-length bounds for the best possible codes in coherent channels.
La progettazione di codici di correzione d’errore per blocchi di informazione corti sta diven- tando un’area di ricerca sempre più rilevante, guidata dalla necessità di una trasmissione efficiente in numerose nuove applicazioni wireless. Queste includono comunicazioni tra macchine, reti di misurazione intelligente, l’Internet of Things, collegamenti di comando remoto e servizi di messaggistica, che richiedono una trasmissione affidabile di piccole unità di dati. Per blocchi di informazione brevi in sistemi di comunicazione coerenti, è stato dimostrato che i codici convoluzionali sono in grado di avvicinarsi ai bound teorici. Tuttavia, la sincronizzazione tramite simboli noti (piloti) introduce un notevole overhead quando si trasmettono pacchetti corti. In questa tesi magistrale proponiamo delle possi- bili soluzioni per superare questo limite analizzando i codici convoluzionali su canali non coerenti, concentrandoci sull’uso di ricevitori che eliminano la necessità di trasmettere piloti. Valutiamo questo approccio usando una modulazione BPSK e QPSK, confrotando le prestazioni dei codici convoluzionali zero-tail e tailbiting a diversi valori di memoria. Infine, analizziamo la complessità e le prestazioni delle soluzioni proposte, confrontandole con i bound noti sui pacchetti corti per i migliori codici possibili in canali coerenti.
Convolutional codes for short-packet communication over noncoherent channels
Ferro, Matteo
2023/2024
Abstract
The design of error-correcting codes for short information blocks is becoming an increas- ingly relevant research area, driven by the demand for efficient transmission in emerging wireless applications. These include machine-type communications, smart metering net- works, the Internet of Things, remote command links, and messaging services, all of which require a reliable and efficient transmission of small data units. For short infor- mation blocks in coherent communication systems, it has been proved that convolutional codes are able to approach performance bounds. However, synchronization using known symbols (pilot symbols) adds significant overhead when dealing with short packets. In this Master’s thesis we try to overcome this limit by analyzing convolutional codes over noncoherent channels, focusing on the use of noncoherent receivers that eliminate the need for pilot symbols. We examine this approach with both BPSK and QPSK modula- tion schemes, evaluating the performance of zero-tail and tail-biting convolutional codes with different memory values. Finally, we assess the complexity and performance of the proposed solutions, comparing them to known approximations of the finite-length bounds for the best possible codes in coherent channels.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Ferro_Executive_Summary.pdf
accessibile in internet per tutti
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
2024_10_Ferro_Tesi.pdf
accessibile in internet per tutti
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227730