The hard-to-abate industrial sector is responsible for about 12% of greenhouse gas emissions. Most of these emissions are product of chemical conversion steps other than fuel combustion, limiting the decarbonization extent achievable by fuel switching strategies. This is the case of cement industry, where 50-70% of CO2 emission come from limestone calcination. Carbon capture and storage (CCS) has been pointed out by organizations such as IEA and IPCC as the key enabler for a short-term emissions abatement in these sectors. The deployment of CCS facilities requires thorough technical and economic analysis (TEAs) to compare among technologies as well as determine their feasibility, understanding their implication in the cost of final products and providing valuable information for decision-makers. This thesis work develops a TEA of a hybrid CCS process applied to cement industry, consisting of partial oxyfuel for the pre-calcination process and post-combustion solid adsorption to treat the rotary kiln flue gases, supported by a CO2 purification unit achieving final desired purity (OXY-VPSA). Adsorption processes are promising alternatives to the benchmark MEA absorption in terms of reducing energy consumption for regeneration. After a detailed literature review on the status of adsorbent materials and process technologies, a two-stage Vacuum-Pressure-Swing-Adsorption (VPSA) process is proposed, mathematically modelled, designed, simulated, and an economic assessment is performed. Four base cases are evaluated, comparing their results with two reference CCS technologies, namely post-combustion MEA absorption (PC-MEA) and a hybrid partial oxyfuel plus MEA absorption (OXY-MEA). The work has been produced in the same framework as the references, mainly based on the CEMCAP project. Key performance indicators used for the comparison included: Specific Primary Energy Consumption for CO2 Avoided (SPECCA), cost of clinker (COC) and cost of avoided carbon (CAC). Finally, a sensitivity analysis (SA) over the most relevant variables is carried out for the best performing OXY-VPSA case. Best performing case presents a SPECCA of 3,27 MJLHV/kgCO2, 15% lower than OXY-MEA and 54% below the PC-MEA cases. The COC obtained reached 103,1 Eur/tclk, only 4% below the references and implying a 61% increase respect to the reference cement plant without coupled carbon capture process. The CAC obtained was 51,4 Eur/tCO2, 10% lower than OXY-MEA and 36% below PC-MEA. The SA revealed that electric grid efficiency, carbon emission factor and electricity prices are the most sensitive variables affecting both environmental and economic indicators assessed.
Il settore industriale “hard-to-abate” è responsabile di circa il 12% delle emissioni di gas serra. Una quota non trascurabile ed inevitabile di queste emissioni deriva da processi diversi dalla combustione, per cui l’abbandono dei combustibili fossili non risulta sufficiente come strategia di decarbonizzazione per il raggiungimento del target di zero emissioni. Questo è il caso dell'industria del cemento, in cui il 50-70% delle emissioni di CO2 proviene dalla calcinazione del carbonato di calcio. La cattura e stoccaggio del carbonio (CCS) è stata indicata da organizzazioni fra i quali la IEA (International Energy Agency) e IPCC (Intergovernmental Panel on Climate Change) come la chiave per una riduzione a breve termine delle emissioni in questi settori. L'implementazione di queste tecnologie richiede approfondite analisi tecniche ed economiche (TEA) per confrontare le diverse tecnologie, valutarne la fattibilità e quantificare l’impatto in termini di emissioni totali e costi di produzione. Questo lavoro di tesi ha riguardato lo sviluppo di una TEA di un processo di cattura di CO2 ibrido applicato all'industria del cemento. Il processo in oggetto è detto ibrido perché combina due diverse tecnologie: ossicombustione parziale per il processo di precalcinazione e adsorbimento per trattare i gas di scarico del forno rotativo (OXY-VPSA). Un'unità di purificazione della CO2 è stata prevista per trattare i gas ricchi in CO2 e garantire la purezza finale desiderata. I processi di adsorbimento rappresentano un’alternativa promettente rispetto all'assorbimento con solventi a base amminica (fra cui etanolammina MEA è il riferimento), in particolare per la riduzione del consumo energetico. Dopo una revisione dettagliata della letteratura sullo stato dei materiali adsorbenti e delle tecnologie di processo, è stato selezionato il processo VPSA (Vacuum Pressure Swing Adsorption), modellato matematicamente, progettato, simulato e valutato da un punto di vista economico. Sono stati valutati quattro casi base, confrontando i risultati con due tecnologie CCS di riferimento, ovvero l’assorbimento tramite MEA in post-combustione (PC-MEA) e un processo ibrido di ossicombustione parziale combinato con assorbimento MEA (OXY-MEA). Il caso con le migliori prestazioni presenta un SPECCA (Specific Primary Energy Consumption for CO2 Avoided) di 3,27 MJLHV/kgCO2, il 15% in meno rispetto all’OXY-MEA e il 54% in meno rispetto ai casi PC-MEA. Il COC ottenuto ha raggiunto 103,1 Eur/tclk, 61% in più rispetto all'impianto non decarbonizzato, e 4% in meno rispetto alle tecnologie CCS di riferimento. Il CAC ottenuto corrisponde a 51,4 Eur/tCO2, il 10% in meno rispetto all’OXY-MEA e il 36% in meno rispetto al PC-MEA.
Process Modelling and Techno-Economic Analysis of VPSA Adsorption Technology for CO2 Capture in a Cement Plant
Galvalisi Audiffred, Leandro
2023/2024
Abstract
The hard-to-abate industrial sector is responsible for about 12% of greenhouse gas emissions. Most of these emissions are product of chemical conversion steps other than fuel combustion, limiting the decarbonization extent achievable by fuel switching strategies. This is the case of cement industry, where 50-70% of CO2 emission come from limestone calcination. Carbon capture and storage (CCS) has been pointed out by organizations such as IEA and IPCC as the key enabler for a short-term emissions abatement in these sectors. The deployment of CCS facilities requires thorough technical and economic analysis (TEAs) to compare among technologies as well as determine their feasibility, understanding their implication in the cost of final products and providing valuable information for decision-makers. This thesis work develops a TEA of a hybrid CCS process applied to cement industry, consisting of partial oxyfuel for the pre-calcination process and post-combustion solid adsorption to treat the rotary kiln flue gases, supported by a CO2 purification unit achieving final desired purity (OXY-VPSA). Adsorption processes are promising alternatives to the benchmark MEA absorption in terms of reducing energy consumption for regeneration. After a detailed literature review on the status of adsorbent materials and process technologies, a two-stage Vacuum-Pressure-Swing-Adsorption (VPSA) process is proposed, mathematically modelled, designed, simulated, and an economic assessment is performed. Four base cases are evaluated, comparing their results with two reference CCS technologies, namely post-combustion MEA absorption (PC-MEA) and a hybrid partial oxyfuel plus MEA absorption (OXY-MEA). The work has been produced in the same framework as the references, mainly based on the CEMCAP project. Key performance indicators used for the comparison included: Specific Primary Energy Consumption for CO2 Avoided (SPECCA), cost of clinker (COC) and cost of avoided carbon (CAC). Finally, a sensitivity analysis (SA) over the most relevant variables is carried out for the best performing OXY-VPSA case. Best performing case presents a SPECCA of 3,27 MJLHV/kgCO2, 15% lower than OXY-MEA and 54% below the PC-MEA cases. The COC obtained reached 103,1 Eur/tclk, only 4% below the references and implying a 61% increase respect to the reference cement plant without coupled carbon capture process. The CAC obtained was 51,4 Eur/tCO2, 10% lower than OXY-MEA and 36% below PC-MEA. The SA revealed that electric grid efficiency, carbon emission factor and electricity prices are the most sensitive variables affecting both environmental and economic indicators assessed.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Galvalisi_Executive Summary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
2024_10_Galvalisi_Thesis_01.pdf
non accessibile
Descrizione: Thesis manuscript
Dimensione
11.67 MB
Formato
Adobe PDF
|
11.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227739