Entering or exiting the atmosphere of a celestial body is a challenging task. The interactions between a space-vehicle and the flow surrounding it create a strong detached wave. Complex Gas-Surface Interaction phenomena occur between the resulting chemically reacting boundary layer and the vehicle’s surface, causing strong heat fluxes and chemical reactions. Thermal Protection System (TPS) are designed to protect the spacecraft. A proper knowledge of the interactions between the flowfield and the surface of the TPS is fundamental for the design of this part of the vehicle. In this essay, uncertainty quantification techniques are used to study the interactions between nitrogen plasma and TPS’s of carbonaceous materials. Two testing campaigns, one at lower pressure (15 hPa) and one at higher ones (100, 200 hPa), performed in the Plasmatron, a high enthalpy facility in the von Karman Institute, are analysed with the aim of comparing the Nitrogen-Carbon ablation model proposed by Prata and the modified version suggested by Capriati. During the experiments a plasma of Nitrogen interacts with a hemispherical graphite sample. Indirect uncertainties on the blowing mass flow rates for the different test cases are analytically quantified. A computational tool developed at the von Karman Institute is used to simulate the flowfield along the stagnation line. Faster propagation of the uncertainties is achieved using surrogate models. Neural Networks and Kriging models are analysed. The comparison between the uncertainties on the experimental results and the numerical propagation of the uncertainties on the experimental conditions of the tests using the two ablation models coupled with the Stagline solver shows that the model proposed by Capriati improves the predictions at low pressures (15hPa), whereas Prata’s ablation model is bis more accurate at higher pressure campaign (100hPa, 200hPa). None of the two ablation models seems to well capture the pressure-dependence of the reactions; a further calibration of the model is then suggested to improve model predictions over the entire pressure range.
Entrare nella o uscire dall’atmosfera di un corpo celeste è un compito molto complesso da portare a termine. Tra le altre difficoltà, le interazioni tra un veicolo e il flusso che lo circonda portano alla nascita di forti onde d’urto e di uno strato limite chimicamente attivo all’interno del quale si verificano complesse interazioni gas-superficie. Il veicolo è protetto dal risultante flusso di calore attraverso l’uso di scudi termici la cui progettazione si basa sulla conoscenza delle interazioni tra la superficie dello scudo stesso e il gas che lo circonda. In questa tesi vengono utilizzate tecniche di quantificazione delle incertezze per studiare le interazioni tra plasma di azoto e scudi termici di carbonio. Vengono analizzate due campagne sperimentali condotte nel Plasmatron, una galleria del vento al plasma situata nel centro di ricerca von Karman Institute, allo scopo di confrontare due versioni di un modello di ablazione proposte da Prata e Capriati. Le incertezze sulla quantità di interesse misurata sperimentalmente, la portata massica ablata durante il test, sono ottenute analiticamente a partire dalle incertezze sulle quantità misurata (incertezze sperimentali). Un solutore fluidodinamico sviluppato internamente in von Karman é utilizzato per simulare il flusso lungo la linea di stagnazione. Il confronto tra le incertezze ricavate analiticamente e la propagazione delle incertezze sperimentali usando le due versioni del modello di ablazione mostra come la versione proposta da Capriati sia migliore nella simulazione degli esperimenti a bassa pressione (15 hPa). La versione di Prata risulta tuttavia preferibile nella simulazione degli esperimenti a più alte pressioni (100 hPa, 200 hPa). Un’efficiente propagazione delle incertezze sperimentali è ottenuta grazie all’utilizzo di modelli Kriging a di reti neurali come modelli surrogati. Nessuna delle due versioni risulta appropriata su un intervallo di pressioni che copra entrambe le campagne sperimentali; per questo motivo é suggerita un'ulteriore calibrazione della versione proposta da Capriati affinché le predizioni sull'intero intervallo di pressione risultino valide.
Stagnation line aerotermochemistry. Focus on uncertainty quantification in nitrogen plasma-graphite interactions in VKI Plasmatron
BANDERA, MATTEO
2023/2024
Abstract
Entering or exiting the atmosphere of a celestial body is a challenging task. The interactions between a space-vehicle and the flow surrounding it create a strong detached wave. Complex Gas-Surface Interaction phenomena occur between the resulting chemically reacting boundary layer and the vehicle’s surface, causing strong heat fluxes and chemical reactions. Thermal Protection System (TPS) are designed to protect the spacecraft. A proper knowledge of the interactions between the flowfield and the surface of the TPS is fundamental for the design of this part of the vehicle. In this essay, uncertainty quantification techniques are used to study the interactions between nitrogen plasma and TPS’s of carbonaceous materials. Two testing campaigns, one at lower pressure (15 hPa) and one at higher ones (100, 200 hPa), performed in the Plasmatron, a high enthalpy facility in the von Karman Institute, are analysed with the aim of comparing the Nitrogen-Carbon ablation model proposed by Prata and the modified version suggested by Capriati. During the experiments a plasma of Nitrogen interacts with a hemispherical graphite sample. Indirect uncertainties on the blowing mass flow rates for the different test cases are analytically quantified. A computational tool developed at the von Karman Institute is used to simulate the flowfield along the stagnation line. Faster propagation of the uncertainties is achieved using surrogate models. Neural Networks and Kriging models are analysed. The comparison between the uncertainties on the experimental results and the numerical propagation of the uncertainties on the experimental conditions of the tests using the two ablation models coupled with the Stagline solver shows that the model proposed by Capriati improves the predictions at low pressures (15hPa), whereas Prata’s ablation model is bis more accurate at higher pressure campaign (100hPa, 200hPa). None of the two ablation models seems to well capture the pressure-dependence of the reactions; a further calibration of the model is then suggested to improve model predictions over the entire pressure range.File | Dimensione | Formato | |
---|---|---|---|
bandera_10_2024_executive_summary.pdf
accessibile in internet per tutti
Descrizione: executive_summary
Dimensione
916.24 kB
Formato
Adobe PDF
|
916.24 kB | Adobe PDF | Visualizza/Apri |
bandera_10_2024_tesi.pdf
accessibile in internet per tutti
Descrizione: elaborato_tesi
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227834