This thesis proposes an innovative structural system for temporary pavilions, focusing on modularity, material efficiency, and environmental sustainability. Drawing upon principles of tensegrity, the research develops a lightweight system that integrates advanced fabrication technologies and addresses key challenges in transportability, assembly, and reusability. The work is situated within the broader discourse on the evolution of lightweight structures in architecture, extending these concepts to create a system that is structurally efficient and suitable for temporary cultural installations. The system is evaluated through a case study, specifically designed for cultural events in the town of Compiano in the Emilian Apennines, Italy. The central premise of this thesis is the development of a modular structural system based on a restrained-arch typology. Each arch in the system is composed of individual square modules, which together form a highly adaptable and transportable pavilion. These modules consist of a combination of advanced materials, including fireproof polyester knitted membranes, 3D-printed polymeric frames, and impermeable laminated membranes. The novel integration of these materials creates a highly efficient structural unit that maintains tensile integrity under load. The restrained-arch configuration leverages the tensegral interplay between the flexible membrane and rigid frame to create a system that is both stable and lightweight, maximizing performance while minimizing material usage. Modularity is a defining characteristic of the system, enabling flexibility in terms of both design and function. The individual modules can be easily assembled into larger structures, such as pavilions or temporary shelters, while maintaining the ability to be rapidly disassembled and reconfigured for different uses or sites. This feature allows the system to address a wide range of spatial and programmatic needs, with the capacity to scale up or down depending on the requirements of the specific event or location. The modular design also facilitates efficient transportation, with components designed to fit on standard Europallets, significantly reducing the logistical challenges typically associated with transporting large-scale temporary structures. The thesis is grounded in a detailed analysis of the materials used in the system, each selected for its mechanical properties and environmental benefits. The fireproof polyester membrane is produced through an electronic knitting process, ensuring a waste-free manufacturing approach. This membrane acts as the flexible component of the module, which interacts with the rigid frame, directly 3D-printed onto the membrane using FDM technology. The integration of these materials not only provides structural integrity but also promotes recyclability and environmental responsibility, as each component can be separated and processed at the end of its lifecycle. The elimination of adhesive bonding between materials ensures that they retain their original chemical composition, allowing for easy disassembly and recycling. These considerations align with the broader goal of developing a sustainable, environmentally friendly architectural system that reduces waste and extends the lifecycle of its components. The thesis also emphasizes the system’s applicability to temporary or semi-temporary structures, particularly in cultural or event-driven contexts where logistical efficiency, ease of assembly, and aesthetic flexibility are crucial. Temporary structures often face constraints related to transportability, rapid deployment, and material use, particularly in challenging environments. The case study focuses on a pavilion designed for the main square of Compiano, a site with historical significance and logistical challenges due to its narrow streets and central location. The proposed pavilion consists of 14 arches made up of 13 panels each, creating a structure approximately 18 meters long, 8 meters wide, and 6 meters high, covering an area of 150 square meters. Additional smaller arches serve as information points across the town, further demonstrating the system’s versatility and capacity for integration in various urban and spatial contexts. The design solution offers significant advantages over traditional temporary structures, reducing transportation needs and enabling faster, more efficient assembly. The pavilion is designed for rapid deployment and dismantling, essential for temporary installations where timing and site conditions are often unpredictable. The modular system allows for the structure to be assembled and disassembled quickly, with minimal labour and equipment. This efficiency in construction is not only practical but also environmentally conscious, reducing energy consumption during both the construction and transportation phases. Furthermore, the system’s adaptability to different configurations allows it to respond dynamically to various spatial and functional demands, making it particularly suited to events such as festivals, concerts, and exhibitions. An important aspect of the research is its focus on sustainability through a life cycle assessment (LCA) of the system. Each component of the module is designed for reuse, recyclability, or minimal environmental impact. The polyester membrane is lightweight and can be repurposed, the PETG frame is recyclable, and the impermeable laminated membrane is designed for easy replacement if damaged. The system’s modularity also contributes to its sustainability, as damaged or irreparable modules can be replaced individually without affecting the overall structure, extending the lifespan of the pavilion. These considerations make the system a responsible alternative to traditional temporary structures, which often involve significant waste and limited reuse. By combining cutting-edge material technologies, modularity, and an emphasis on sustainability, this thesis contributes to the ongoing development of lightweight architectural systems that are both functional and environmentally responsible. The proposed system addresses key challenges in temporary architecture by offering a structurally sound, flexible, and sustainable solution for cultural events in various contexts. The research offers a valuable addition to the discourse on modular construction and tensegrity, demonstrating how material innovation and thoughtful design can be leveraged to create adaptable, lightweight structures that meet contemporary architectural and environmental needs.
Il lavoro di Tesi di Laurea Magistrale qui presentato propone un sistema strutturale innovativo per padiglioni temporanei, incentrato su modularità, efficienza dei materiali e sostenibilità ambientale. Basandosi sui principi della tensegrity, la ricerca sviluppa un sistema leggero che integra tecnologie avanzate di fabbricazione e affronta le principali sfide legate alla trasportabilità, all’assemblaggio e alla riutilizzabilità. Il lavoro si inserisce nel più ampio discorso sull’evoluzione delle strutture leggere in architettura, estendendo questi concetti per creare un sistema strutturalmente efficiente e adatto a installazioni culturali temporanee. Il sistema viene valutato attraverso un caso studio, progettato specificamente per eventi culturali nella città di Compiano, situata nell’Appennino Emiliano, in Italia. Il fondamento centrale di questa tesi è lo sviluppo di un sistema strutturale modulare basato su una tipologia ad arco vincolato. Ogni arco del sistema è composto da moduli quadrati individuali che, insieme, formano un padiglione altamente adattabile e trasportabile. Questi moduli consistono in una combinazione di materiali avanzati, tra cui membrane in poliestere ignifugo a maglia, telai polimerici stampati in 3D e membrane laminate impermeabili. L’integrazione innovativa di questi materiali crea un’unità strutturale altamente efficiente che mantiene l’integrità tensiva sotto carico. La configurazione ad arco vincolato sfrutta l’interazione tensegrale tra la membrana flessibile e il telaio rigido per creare un sistema stabile e leggero, massimizzando le prestazioni e minimizzando l’uso di materiali. La modularità è una caratteristica distintiva del sistema, che consente flessibilità sia in termini di design che di funzione. I moduli individuali possono essere facilmente assemblati in strutture più ampie, come padiglioni o rifugi temporanei, mantenendo la capacità di essere rapidamente smontati e riconfigurati per diversi utilizzi o siti. Questa caratteristica consente al sistema di rispondere a una vasta gamma di esigenze spaziali e programmatiche, con la capacità di ridimensionarsi in base ai requisiti specifici dell’evento o del luogo. Il design modulare facilita anche il trasporto efficiente, con componenti progettati per poter essere trasportati su Europallet standard, riducendo significativamente le sfide logistiche tipicamente associate al trasporto di grandi strutture temporanee. La tesi si basa su un’analisi dettagliata dei materiali utilizzati nel sistema, ciascuno selezionato per le sue proprietà meccaniche e benefici ambientali. La membrana in poliestere ignifugo è prodotta attraverso un processo di maglieria elettronica, garantendo un approccio produttivo senza sprechi. Questa membrana funge da componente flessibile del modulo, che interagisce con il telaio rigido, stampato direttamente sulla membrana utilizzando la tecnologia FDM. L’integrazione di questi materiali non solo fornisce integrità strutturale, ma promuove anche la riciclabilità e la responsabilità ambientale, poiché ogni componente può essere separato e trattato al termine del suo ciclo di vita. L’eliminazione dell’uso di adesivi tra i materiali garantisce che essi mantengano la loro composizione chimica originale, consentendo un facile smontaggio e riciclaggio. Queste considerazioni sono in linea con l’obiettivo più ampio di sviluppare un sistema architettonico sostenibile ed ecologicamente responsabile, che riduca gli sprechi ed estenda il ciclo di vita dei suoi componenti. La tesi sottolinea anche l’applicabilità del sistema a strutture temporanee o semi-temporanee, in particolare in contesti culturali o legati a eventi, dove efficienza logistica, facilità di montaggio e flessibilità estetica sono cruciali. Le strutture temporanee affrontano spesso vincoli legati alla trasportabilità, al rapido dispiegamento e all’uso dei materiali, in particolare in ambienti difficili. Il caso studio si concentra su un padiglione progettato per la piazza principale di Compiano, un sito di rilevanza storica con sfide logistiche dovute alle strade strette e alla posizione centrale. Il padiglione proposto è composto da 14 archi costituiti ciascuno da 13 pannelli, creando una struttura lunga circa 18 metri, larga 8 metri e alta 6 metri, coprendo un’area di 150 metri quadrati. Ulteriori archi più piccoli fungono da punti informativi distribuiti per la città, dimostrando ulteriormente la versatilità del sistema e la sua capacità di integrazione in diversi contesti urbani e spaziali. La soluzione progettuale offre vantaggi significativi rispetto alle strutture temporanee tradizionali, riducendo le esigenze di trasporto e consentendo un assemblaggio più rapido ed efficiente. Il padiglione è progettato per un rapido dispiegamento e smontaggio, essenziali per installazioni temporanee dove il tempo e le condizioni del sito sono spesso imprevedibili. Il sistema modulare consente alla struttura di essere assemblata e smontata rapidamente, con un impiego minimo di manodopera e attrezzature. Questa efficienza nella costruzione è non solo pratica, ma anche ecologicamente consapevole, riducendo il consumo energetico sia durante la fase di costruzione che di trasporto. Inoltre, l’adattabilità del sistema a diverse configurazioni gli permette di rispondere in modo dinamico a diverse esigenze spaziali e funzionali, rendendolo particolarmente adatto a eventi come festival, concerti ed esposizioni. Ogni componente del modulo è progettato per essere riutilizzato, riciclabile o avere un impatto ambientale minimo. La membrana in poliestere è leggera e può essere riutilizzata, il telaio in PETG è riciclabile e la membrana laminata impermeabile è progettata per essere facilmente sostituibile in caso di danni. La modularità del sistema contribuisce alla sua sostenibilità, poiché i moduli danneggiati o non riparabili possono essere sostituiti singolarmente senza compromettere la struttura complessiva, estendendo così la durata del padiglione. Combinando tecnologie avanzate sui materiali, modularità e un’enfasi sulla sostenibilità, questa tesi contribuisce allo sviluppo continuo di sistemi architettonici leggeri che siano funzionali e responsabili dal punto di vista ambientale. Il sistema proposto affronta le principali sfide dell’architettura temporanea offrendo una soluzione strutturalmente solida, flessibile e sostenibile per eventi culturali in diversi contesti. La ricerca offre un contributo significativo al discorso sulla costruzione modulare e sulla tensegrity, dimostrando come l’innovazione nei materiali e un design attento possano essere sfruttati per creare strutture leggere e adattabili che rispondano alle esigenze architettoniche e ambientali contemporanee.
The lightness of form: a modular approach to a dynamic, fast deployable tensegral canopy system
Medioli, Luca
2023/2024
Abstract
This thesis proposes an innovative structural system for temporary pavilions, focusing on modularity, material efficiency, and environmental sustainability. Drawing upon principles of tensegrity, the research develops a lightweight system that integrates advanced fabrication technologies and addresses key challenges in transportability, assembly, and reusability. The work is situated within the broader discourse on the evolution of lightweight structures in architecture, extending these concepts to create a system that is structurally efficient and suitable for temporary cultural installations. The system is evaluated through a case study, specifically designed for cultural events in the town of Compiano in the Emilian Apennines, Italy. The central premise of this thesis is the development of a modular structural system based on a restrained-arch typology. Each arch in the system is composed of individual square modules, which together form a highly adaptable and transportable pavilion. These modules consist of a combination of advanced materials, including fireproof polyester knitted membranes, 3D-printed polymeric frames, and impermeable laminated membranes. The novel integration of these materials creates a highly efficient structural unit that maintains tensile integrity under load. The restrained-arch configuration leverages the tensegral interplay between the flexible membrane and rigid frame to create a system that is both stable and lightweight, maximizing performance while minimizing material usage. Modularity is a defining characteristic of the system, enabling flexibility in terms of both design and function. The individual modules can be easily assembled into larger structures, such as pavilions or temporary shelters, while maintaining the ability to be rapidly disassembled and reconfigured for different uses or sites. This feature allows the system to address a wide range of spatial and programmatic needs, with the capacity to scale up or down depending on the requirements of the specific event or location. The modular design also facilitates efficient transportation, with components designed to fit on standard Europallets, significantly reducing the logistical challenges typically associated with transporting large-scale temporary structures. The thesis is grounded in a detailed analysis of the materials used in the system, each selected for its mechanical properties and environmental benefits. The fireproof polyester membrane is produced through an electronic knitting process, ensuring a waste-free manufacturing approach. This membrane acts as the flexible component of the module, which interacts with the rigid frame, directly 3D-printed onto the membrane using FDM technology. The integration of these materials not only provides structural integrity but also promotes recyclability and environmental responsibility, as each component can be separated and processed at the end of its lifecycle. The elimination of adhesive bonding between materials ensures that they retain their original chemical composition, allowing for easy disassembly and recycling. These considerations align with the broader goal of developing a sustainable, environmentally friendly architectural system that reduces waste and extends the lifecycle of its components. The thesis also emphasizes the system’s applicability to temporary or semi-temporary structures, particularly in cultural or event-driven contexts where logistical efficiency, ease of assembly, and aesthetic flexibility are crucial. Temporary structures often face constraints related to transportability, rapid deployment, and material use, particularly in challenging environments. The case study focuses on a pavilion designed for the main square of Compiano, a site with historical significance and logistical challenges due to its narrow streets and central location. The proposed pavilion consists of 14 arches made up of 13 panels each, creating a structure approximately 18 meters long, 8 meters wide, and 6 meters high, covering an area of 150 square meters. Additional smaller arches serve as information points across the town, further demonstrating the system’s versatility and capacity for integration in various urban and spatial contexts. The design solution offers significant advantages over traditional temporary structures, reducing transportation needs and enabling faster, more efficient assembly. The pavilion is designed for rapid deployment and dismantling, essential for temporary installations where timing and site conditions are often unpredictable. The modular system allows for the structure to be assembled and disassembled quickly, with minimal labour and equipment. This efficiency in construction is not only practical but also environmentally conscious, reducing energy consumption during both the construction and transportation phases. Furthermore, the system’s adaptability to different configurations allows it to respond dynamically to various spatial and functional demands, making it particularly suited to events such as festivals, concerts, and exhibitions. An important aspect of the research is its focus on sustainability through a life cycle assessment (LCA) of the system. Each component of the module is designed for reuse, recyclability, or minimal environmental impact. The polyester membrane is lightweight and can be repurposed, the PETG frame is recyclable, and the impermeable laminated membrane is designed for easy replacement if damaged. The system’s modularity also contributes to its sustainability, as damaged or irreparable modules can be replaced individually without affecting the overall structure, extending the lifespan of the pavilion. These considerations make the system a responsible alternative to traditional temporary structures, which often involve significant waste and limited reuse. By combining cutting-edge material technologies, modularity, and an emphasis on sustainability, this thesis contributes to the ongoing development of lightweight architectural systems that are both functional and environmentally responsible. The proposed system addresses key challenges in temporary architecture by offering a structurally sound, flexible, and sustainable solution for cultural events in various contexts. The research offers a valuable addition to the discourse on modular construction and tensegrity, demonstrating how material innovation and thoughtful design can be leveraged to create adaptable, lightweight structures that meet contemporary architectural and environmental needs.File | Dimensione | Formato | |
---|---|---|---|
2024_10_Medioli.pdf
non accessibile
Dimensione
15.63 MB
Formato
Adobe PDF
|
15.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227887