Drug-coated balloons (DCBs) are medical devices widely used to treat cardiovascular diseases, but their effectiveness is often limited by Insufficient transfer of the drug coating from the balloon to the targeted site. Understanding and improving this transfer process is crucial for enhancing therapeutic outcomes. One of the fundamental challenges is understanding how physical parameters, such as contact pressure, influence the efficiency of drug coating transfer. Currently, there is also a lack of non-destructive methods for analyzing how much drug is transferred to the tissue, making it difficult to study this process and optimize it without destroying the samples. This thesis aimed to address these issues by investigating the mechanisms behind drug transfer from DCBs to arterial tissue, focusing specifically on how contact pressure affects this process. The work also aims to develop advanced image processing techniques to compare the transferred drug coating with the bulk drug post in vivo treatment and explore the potential of non-destructive methods like Optical Coherence Tomography (OCT) to assess coating transfer efficacy. To achieve these goals in vivo, ex vivo, and in silico methodologies were used. In the in vivo studies, porcine arteries treated with DCBs were analyzed using OCT and Scanning Electron Microscopy (SEM) to create maps of drug coating distribution. For the ex vivo experiments, drug-coated balloons were inflated and subjected to stamping tests using a uniaxial machine, which simulated the compression applied during DCB angioplasty. The tissues were analyzed with image processing to quantify the amount of drug transferred at different levels of contact pressure, to validate our results we compare them with goal standard method HPLC. Additionally, computational simulations were performed to understand how factors like arterial stiffness and thickness might influence drug transfer. The results demonstrated that increased contact pressure significantly increased drug coating transfer, but this correlation is not linear in fact we observe that until a certain value of contact pressure we have trend and after that value we have the same trend but with a lower slope. Comparing OCT and SEM maps we can afferm that OCT-based imaging produced results similar to SEM, indicating that OCT could be a faster and less invasive alternative for future studies to assess transfer efficacy. In conclusion acute coating transfer are correlated with bulk drug both in the vivo and in the ex vivo study, suggesting that image analysis is a reliable tool to assess the drug transfer efficacy. Moreover, 2D segmentation and OCT-based analysis proved to be promising potentially offering a new way to optimize DCBs treatments without destroying tissue samples. OCT coating distribution maps are qualitative correlated with SEM maps and for their less invasive solution the first one can be performed in humans while SEM not.
I drug-coated balloon (DCB) sono dispositivi medici ampiamente utilizzati per il trattamento delle malattie cardiovascolari, ma la loro efficacia è spesso limitata da un insufficiente trasferimento del rivestimento farmacologico dal palloncino al sito bersaglio. Comprendere e migliorare questo processo di trasferimento è fondamentale per migliorare i risultati terapeutici. Una delle sfide fondamentali è capire come i parametri fisici, come la pressione di contatto, influenzino l'efficienza del trasferimento del rivestimento farmacologico. Attualmente, inoltre, mancano metodi non distruttivi per analizzare la quantità di farmaco trasferita al tessuto, rendendo difficile studiare questo processo e ottimizzarlo senza distruggere i campioni. Questa tesi si propone di affrontare questi problemi studiando i meccanismi alla base del trasferimento del farmaco dai DCB al tessuto arterioso, concentrandosi in particolare su come la pressione di contatto influisca su questo processo. Il lavoro mira anche a sviluppare tecniche avanzate di elaborazione delle immagini per confrontare il rivestimento di farmaco trasferito con il farmaco sfuso dopo il trattamento in vivo ed esplorare il potenziale di metodi non distruttivi come la tomografia a coerenza ottica (OCT) per valutare l'efficacia del trasferimento del rivestimento. Per raggiungere questi obiettivi sono state utilizzate metodologie in vivo, ex vivo e in silico. Negli studi in vivo, le arterie suine trattate con DCB sono state analizzate con OCT e microscopia elettronica a scansione (SEM) per creare mappe della distribuzione del rivestimento del farmaco. Per gli esperimenti ex vivo, i palloncini rivestiti di farmaco sono stati gonfiati e sottoposti a prove di stamping con una macchina monoassiale, che simulava la compressione applicata durante l'angioplastica con DCB. I tessuti sono stati analizzati con l'elaborazione di immagini per quantificare la quantità di farmaco trasferita a diversi livelli di pressione di contatto; per convalidare i nostri risultati, li abbiamo confrontati con il metodo standard HPLC. Inoltre, sono state eseguite simulazioni computazionali per capire come fattori quali la rigidità e lo spessore dell'arteria possano influenzare il trasferimento del farmaco. I risultati hanno dimostrato che l'aumento della pressione di contatto aumenta significativamente il trasferimento del rivestimento di farmaco, ma questa correlazione non è lineare, infatti si osserva che fino a un certo valore di pressione di contatto si ha un trend e dopo tale valore si ha lo stesso trend ma con una pendenza inferiore. Confrontando le mappe OCT e SEM possiamo affermare che l'imaging basato sull'OCT ha prodotto risultati simili a quelli del SEM, indicando che l'OCT potrebbe essere un'alternativa più rapida e meno invasiva per studi futuri per valutare l'efficacia del trasferimento. In conclusione, il trasferimento del rivestimento acuto è correlato con il farmaco sfuso sia nello studio in vivo che in quello ex vivo, suggerendo che l'analisi delle immagini è uno strumento affidabile per valutare l'efficacia del trasferimento del farmaco. Inoltre, la segmentazione 2D e l'analisi basata sull'OCT si sono rivelate promettenti, offrendo potenzialmente un nuovo modo per ottimizzare i trattamenti con DCBs senza distruggere i campioni di tessuto. Le mappe di distribuzione del rivestimento OCT sono qualitativamente correlate alle mappe SEM e, per la loro minore invasività, la prima può essere eseguita nell'uomo mentre la SEM no.
Acute coating transfer from commercial drug-coated balloons: in vivo evidence and controlled ex vivo experiments demonstrating the impact of contact pressure on drug-coating delivery
MOROSIN, LORENZO;Guarnieri, Marco
2023/2024
Abstract
Drug-coated balloons (DCBs) are medical devices widely used to treat cardiovascular diseases, but their effectiveness is often limited by Insufficient transfer of the drug coating from the balloon to the targeted site. Understanding and improving this transfer process is crucial for enhancing therapeutic outcomes. One of the fundamental challenges is understanding how physical parameters, such as contact pressure, influence the efficiency of drug coating transfer. Currently, there is also a lack of non-destructive methods for analyzing how much drug is transferred to the tissue, making it difficult to study this process and optimize it without destroying the samples. This thesis aimed to address these issues by investigating the mechanisms behind drug transfer from DCBs to arterial tissue, focusing specifically on how contact pressure affects this process. The work also aims to develop advanced image processing techniques to compare the transferred drug coating with the bulk drug post in vivo treatment and explore the potential of non-destructive methods like Optical Coherence Tomography (OCT) to assess coating transfer efficacy. To achieve these goals in vivo, ex vivo, and in silico methodologies were used. In the in vivo studies, porcine arteries treated with DCBs were analyzed using OCT and Scanning Electron Microscopy (SEM) to create maps of drug coating distribution. For the ex vivo experiments, drug-coated balloons were inflated and subjected to stamping tests using a uniaxial machine, which simulated the compression applied during DCB angioplasty. The tissues were analyzed with image processing to quantify the amount of drug transferred at different levels of contact pressure, to validate our results we compare them with goal standard method HPLC. Additionally, computational simulations were performed to understand how factors like arterial stiffness and thickness might influence drug transfer. The results demonstrated that increased contact pressure significantly increased drug coating transfer, but this correlation is not linear in fact we observe that until a certain value of contact pressure we have trend and after that value we have the same trend but with a lower slope. Comparing OCT and SEM maps we can afferm that OCT-based imaging produced results similar to SEM, indicating that OCT could be a faster and less invasive alternative for future studies to assess transfer efficacy. In conclusion acute coating transfer are correlated with bulk drug both in the vivo and in the ex vivo study, suggesting that image analysis is a reliable tool to assess the drug transfer efficacy. Moreover, 2D segmentation and OCT-based analysis proved to be promising potentially offering a new way to optimize DCBs treatments without destroying tissue samples. OCT coating distribution maps are qualitative correlated with SEM maps and for their less invasive solution the first one can be performed in humans while SEM not.File | Dimensione | Formato | |
---|---|---|---|
2024_09_Guarnieri_Morosin_executive_summary.pdf
accessibile in internet per tutti
Dimensione
969.34 kB
Formato
Adobe PDF
|
969.34 kB | Adobe PDF | Visualizza/Apri |
2024_09_Guarnieri_Morosin_thesis.pdf
accessibile in internet per tutti
Dimensione
10.12 MB
Formato
Adobe PDF
|
10.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227974