Cemented carbides, or hardmetals, represent a class of composite materials, that consist of carbide matrix and metal binder. They are characterized by high hardness and wear resistance, making them highly desirable in demanding operational environments. Conventional manufacturing methods are based on powder metallurgy methods of consolidating by pressing or extrusion and sintering, which can achieve low porosity and high mechanical properties but limit its ability to produce complex geometries. To address this problem, additive manufacturing techniques were investigated in this work. In accordance with the state of the art, one of the most promising additive manufacturing technologies for cemented carbide is Binder Jetting. It is a multi-step process, where shaping undergoes without significant heat input, using limited polymer additions and densification occurs in standard furnaces. The use of cobalt as a binder has raised concerns due to its cost and health implications. Therefore, researching alternative binders, such as high-entropy alloys is a relevant topic of cemented carbides research. High-entropy alloys could introduce higher mechanical properties and grain growth inhibition effect, which could be a significant breakthrough in the industry of cemented carbides. The research is presented in two chapters. In the first part, the experiment is planned to meet the industrial requirements of producing commercially available WC-Co material using binder jetting additive manufacturing. As a result, printing parameters and sintering conditions were optimized to meet the industrial requirements for WC-Co cemented carbide. The second step is dedicated to the use of high-entropy alloys as a potential substitution of cobalt in cemented carbides. In order to achieve this, based on state-of-the-art and CALPHAD simulations, new high-entropy alloy composition is proposed. The results demonstrate significant increase in hardness, in comparison to WC-Co without noticeable grain growth. However the formation of secondary was carbides observed, that should be taken into consideration for further development.
I carburi cementati, o metalli duri, rappresentano una classe di materiali compositi, costituiti da una matrice di carburo e da un legante metallico. Sono caratterizzati da un'elevata durezza e resistenza all'usura, che li rende altamente desiderabili in ambienti operativi difficili. I metodi di produzione convenzionali si basano su tecniche di metallurgia delle polveri, che prevedono il consolidamento tramite pressatura o estrusione e sinterizzazione. Questi metodi possono ottenere una bassa porosità e proprietà meccaniche elevate, ma limitano la capacità di produrre geometrie complesse. Per affrontare questo problema, in questo lavoro sono state studiate tecniche di produzione additiva. Secondo lo stato dell'arte, una delle tecnologie di produzione additiva più promettenti per i carburi cementati è il Binder Jetting. Si tratta di un processo a più fasi, in cui la formatura avviene senza un significativo apporto di calore, utilizzando aggiunte limitate di polimeri e la densificazione avviene in forni standard. L'uso del cobalto come legante ha sollevato preoccupazioni a causa dei costi e delle implicazioni per la salute. Pertanto, la ricerca di leganti alternativi, come le leghe ad alta entropia, è un argomento rilevante nella ricerca sui carburi cementati. Le leghe ad alta entropia potrebbero introdurre proprietà meccaniche più elevate e un effetto di inibizione della crescita dei grani, che potrebbe rappresentare una svolta significativa nell'industria dei carburi cementati. La ricerca è presentata in due parte. Nella prima parte, l'esperimento è stato pianificato per soddisfare i requisiti industriali della produzione di materiale WC-Co disponibile in commercio utilizzando la produzione additiva con Binder Jetting. Di conseguenza, i parametri di stampa e le condizioni di sinterizzazione sono stati ottimizzati per soddisfare i requisiti industriali per il carburo cementato WC-Co. La seconda parte è dedicata all'uso di leghe ad alta entropia come potenziale sostituto del cobalto nei carburi cementati. A tal fine, sulla base dello stato dell'arte e delle simulazioni CALPHAD, è stata proposta una nuova composizione di lega ad alta entropia. I risultati dimostrano un aumento significativo della durezza rispetto al WC-Co, senza una notevole crescita dei grani. Tuttavia, è stata osservata la formazione di carburi secondari, che dovrebbe essere presa in considerazione per ulteriori sviluppi.
Microstructure, phase composition and properties of WC-Co and innovative cemented carbides
GONCHAROV, IVAN
2023/2024
Abstract
Cemented carbides, or hardmetals, represent a class of composite materials, that consist of carbide matrix and metal binder. They are characterized by high hardness and wear resistance, making them highly desirable in demanding operational environments. Conventional manufacturing methods are based on powder metallurgy methods of consolidating by pressing or extrusion and sintering, which can achieve low porosity and high mechanical properties but limit its ability to produce complex geometries. To address this problem, additive manufacturing techniques were investigated in this work. In accordance with the state of the art, one of the most promising additive manufacturing technologies for cemented carbide is Binder Jetting. It is a multi-step process, where shaping undergoes without significant heat input, using limited polymer additions and densification occurs in standard furnaces. The use of cobalt as a binder has raised concerns due to its cost and health implications. Therefore, researching alternative binders, such as high-entropy alloys is a relevant topic of cemented carbides research. High-entropy alloys could introduce higher mechanical properties and grain growth inhibition effect, which could be a significant breakthrough in the industry of cemented carbides. The research is presented in two chapters. In the first part, the experiment is planned to meet the industrial requirements of producing commercially available WC-Co material using binder jetting additive manufacturing. As a result, printing parameters and sintering conditions were optimized to meet the industrial requirements for WC-Co cemented carbide. The second step is dedicated to the use of high-entropy alloys as a potential substitution of cobalt in cemented carbides. In order to achieve this, based on state-of-the-art and CALPHAD simulations, new high-entropy alloy composition is proposed. The results demonstrate significant increase in hardness, in comparison to WC-Co without noticeable grain growth. However the formation of secondary was carbides observed, that should be taken into consideration for further development.File | Dimensione | Formato | |
---|---|---|---|
Ivan Goncharov PhD Thesis.pdf
accessibile in internet per tutti a partire dal 23/09/2025
Descrizione: Microstructure, phase composition and properties of WC-Co and innovative cemented carbides
Dimensione
38.04 MB
Formato
Adobe PDF
|
38.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/228392