Air pollution from transportation accounts for a significant share of global pollutant emissions. Among these pollutants, nitrogen oxides (NOx), which are primarily emitted by internal combustion engines, present a serious threat to human health. NOx is particularly concerning due to its strong link to lung cancer and its role in the formation of tropospheric ozone, a harmful air pollutant. In response to these health risks, recent regulations have been implemented with the goal of reducing NOx emissions to nearly zero, reflecting the growing emphasis on minimizing the environmental and public health impacts of transportation. Additionally, advancements in emission control technologies are being developed to meet these stringent standards, highlighting the importance of ongoing innovation in this field. These regulations target not only new vehicle technologies but also the improvement of exhaust after-treatment systems to address the environmental and public health risks associated with NOx pollution. Currently, nitrogen oxides emissions are managed using Three-Way Catalysts (TWC) for gasoline engines and Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) technologies for diesel engines. These systems are effective but require a minimum operating temperature, typically above 200°C, to function efficiently. However, internal combustion engines, particularly diesel engines, frequently experience an extended period known as the cold start phase, during which the engine operates at temperatures below this threshold. During cold start, the exhaust temperature remains too low for these emission control technologies to be fully effective, leading to increased NOx emissions until the engine reaches the required operating temperature. This challenge underscores the need for advancements in catalyst technologies that can perform efficiently at lower temperatures to reduce NOx emissions during the cold start phase. Hybrid vehicles, which combine electric motors with internal combustion engines, also encounter significant challenges related to cold starts. The start/stop nature of hybrid operation, where the combustion engine frequently cycles on and off, intensifies these cold start issues. One of the primary concerns is that the engine often fails to reach its optimal operating temperature during these short cycles, which can lead to incomplete fuel combustion. This not only increases emissions but also contributes to higher levels of pollutants such as unburned hydrocarbons, carbon monoxide, and nitrogen oxides, which are particularly problematic during the initial moments after a cold start. Additionally, the repeated cold starts can accelerate wear and tear on engine components, potentially reducing the overall lifespan of the vehicle. Addressing these cold start challenges is essential for several reasons. Improving cold start performance can significantly enhance the fuel efficiency of hybrid vehicles, as well as their reliability and durability. Moreover, by reducing the emissions associated with cold starts, hybrid vehicles can better fulfill their potential as environmentally friendly alternatives to traditional vehicles. One promising strategy for mitigating NOx emissions at low temperatures is the implementation of Passive NOx Adsorbers (PNAs). PNAs are specifically engineered to capture NOx during cold start conditions when traditional catalytic converters are less effective. They adsorb NOx at low temperatures and then release it at higher temperatures, allowing the NOx to be treated in downstream systems such as selective catalytic reduction (SCR) units or three-way catalysts (TWC). Among various materials evaluated for PNA applications, zeolite-supported Pd stands out due to its remarkable NOx storage and release characteristics. Pd, when dispersed on a zeolite framework, exhibits high affinity for NOx species at low temperatures, which is crucial for effective cold start emission control. The zeolite structure not only provides a large surface area for Pd dispersion but also stabilizes the Pd species, enhancing both the adsorption efficiency and thermal stability of the material. Additionally, the strong interaction between Pd and the acidic sites of the zeolite promotes the selective adsorption of NOx over other exhaust components, further optimizing the PNA performance. Research has shown that these materials can achieve significant reductions in NOx emissions during the critical cold start phase, making them a key component in meeting stringent regulatory standards. Moreover, advancements in the synthesis and preparation methods, such as ion exchange techniques, have further improved the dispersion and accessibility of Pd within the zeolite framework, thereby enhancing the overall efficiency of the PNAs. The integration of zeolite-supported Pd-PNAs into exhaust systems represents a significant step forward in the development of advanced aftertreatment technologies aimed at reducing vehicular emissions under real-world driving conditions. This has motivated this thesis work where an investigation have been conducted using operando FT-IR spectroscopy in combination with microreactor studies to explore the mechanistic details of low-temperature NOx adsorption and desorption, and to assess the catalyst's performance at different temperatures and under the impact of the different species present in the exhaust gases like O2, H2O, CO, hydrocarbons (e.g. C3H6). In particular, Operando FT-IR spectroscopy plays a crucial role in providing insights into catalytic reaction mechanisms and pathways by enabling real-time analysis of both the catalyst surface and the gas phase during catalytic reactions. In addition to monitoring surface phenomena and gas-phase dynamics, Operando FT-IR facilitates the detection of reaction intermediates. In fact, owing to the Operando conditions, it is possible to have a motion picture of the surface during the catalytic operation, that otherwise cannot be observed under vacuum conditions. By integrating gas-phase analysis with simultaneous FT-IR spectroscopic surface analysis, this approach contributes to a comprehensive understanding of reaction mechanisms and the behavior of surface species. For this thesis, a zeolite with a small pore size, specifically chabazite, doped with palladium (Pd) has been synthesized and characterized, and the impact of the exhaust gases on the NOx trapping and desorption characteristics of the Pd promoted zeolite has been evaluated. The catalyst, referred to as "W-Pd/SSZ-13," was synthesized using the wet impregnation method. This technique allows for a good control over the distribution and loading of active metal sites, potentially leading to higher catalytic efficiency and stability under reaction conditions. Characterization of the catalyst using in-situ CO/NO adsorption coupled with FT-IR spectroscopy revealed the presence of isolated Pd+ and Pd2+ species, produced via ion exchange at the Brønsted acid sites within the zeolite, along with the presence of PdOx particles on the zeolite's external surface. Reactivity study involves a standard test conducted under conditions that mimic real-world exhaust environments, incorporating O2 and H2O. Following this, the research systematically examines the effect of each of these components on the catalyst’s performance at three key adsorption temperatures: 80°C, 120°C, and 150°C. The investigation seeks to provide a comprehensive understanding of how the presence of individual exhaust components influences NOx storage efficiency, thermal stability, and overall catalyst performance, which are crucial factors in optimizing PNAs for real-world applications. NO adsorption under standard conditions (i.e. in presence of water and oxygen) at all temperatures is accompanied by NO2 evolution due to the reduction of Pd2+ to Pd+ sites; formation of Pd nitrosyls is observed. The investigation of various adsorption temperatures yield similar nitrosyl formations, with additional nitrate formation at lower temperatures. The thermal stability of the adsorbed species increases upon increasing the adsorption temperature. The presence of oxygen does not significantly impact NO adsorption, and nitrosyls are formed like in the run with oxygen. However, the presence of oxygen reduces the stability of adsorbed nitrosyls by promoting the reoxidation of Pd+ nitrosyls to less stable Pdn+ species upon heating. At variance, H2O strongly impacts the NO adsorption since in its absence no reduction of Pd2+ to Pd+ by NO occurs and hence no formation of NO2 is observed during the storage. Nitrosyls of Pd2+ are formed in this case, along with nitrosonium ions over the acid sites of the zeolite. This increases the storage capacity of the catalyst; however, the thermal stability of the adsorbed species is very poor and they decompose at low temperatures. The presence of CO and propylene was found to reduce the NOx storage capacity of the catalyst. NO was observed to adsorb as nitrosyls in the presence of CO and as Pdn+(NO)(X) complexes in the presence of propylene. Lastly, the performances of a Ion-Exchange (IE) catalyst has been compared with those of the catalyst prepared by wet-impregnation (W-Pd/SSZ-13). The IE sample shows a reduced Pd loading with respect to the impregnated sample (0,2 % w/w vs 1 % w/w). Normalizing the results for the different Pd loading, very similar results have been obtained under standard conditions, i.e. NO reduces Pd2+ to Pd+ and adsorbs in the form of nitrosyls. The ion-exchange catalyst showed a slightly improved NO adsorption capacity (normalized for the Pd loading) but a lower thermal stability of the adsorbed species. Very similar effect of the operating conditions (T, oxygen and water content) is observed on this catalyst with respect to the impregnated sample, if one exclude the higher formation of nitrosonium ions under dry conditions due to the higher amounts of zeolite acid sites not occupied by Pd.
L'inquinamento atmosferico causato dai trasporti rappresenta una quota significativa delle emissioni globali di inquinanti. Tra questi inquinanti, gli ossidi di azoto (NOx), emessi principalmente dai motori a combustione interna, rappresentano una seria minaccia per la salute umana. Gli NOx sono particolarmente preoccupanti a causa del loro forte legame con il cancro ai polmoni e del loro ruolo nella formazione dell'ozono troposferico, un inquinante atmosferico nocivo. In risposta a questi rischi per la salute, sono state implementate recenti normative con l'obiettivo di ridurre le emissioni di NOx quasi a zero, riflettendo la crescente enfasi sulla riduzione al minimo degli impatti ambientali e sulla salute pubblica dei trasporti. Inoltre, si stanno sviluppando progressi nelle tecnologie di controllo delle emissioni per soddisfare questi rigorosi standard, evidenziando l'importanza dell'innovazione continua in questo campo. Queste normative mirano non solo alle nuove tecnologie dei veicoli, ma anche al miglioramento dei sistemi di post-trattamento dei gas di scarico per affrontare i rischi ambientali e per la salute pubblica associati all'inquinamento da NOx. Attualmente, le emissioni di ossidi di azoto vengono gestite utilizzando catalizzatori a tre vie (TWC) per i motori a benzina e tecnologie di riduzione catalitica selettiva (SCR) e trappola per NOx magra (LNT) per i motori diesel. Questi sistemi sono efficaci ma richiedono una temperatura minima di esercizio, in genere superiore a 200 °C, per funzionare in modo efficiente. Tuttavia, i motori a combustione interna, in particolare i motori diesel, sperimentano spesso un periodo prolungato noto come fase di avviamento a freddo, durante il quale il motore funziona a temperature inferiori a questa soglia. Durante l'avviamento a freddo, la temperatura di scarico rimane troppo bassa perché queste tecnologie di controllo delle emissioni siano pienamente efficaci, portando a un aumento delle emissioni di NOx finché il motore non raggiunge la temperatura di esercizio richiesta. Questa sfida sottolinea la necessità di progressi nelle tecnologie dei catalizzatori che possano funzionare in modo efficiente a temperature più basse per ridurre le emissioni di NOx durante la fase di avviamento a freddo. Anche i veicoli ibridi, che combinano motori elettrici con motori a combustione interna, incontrano notevoli sfide legate all'avviamento a freddo. La natura start/stop del funzionamento ibrido, in cui il motore a combustione si accende e si spegne frequentemente, intensifica questi problemi di avviamento a freddo. Una delle preoccupazioni principali è che il motore spesso non riesce a raggiungere la sua temperatura di esercizio ottimale durante questi brevi cicli, il che può portare a una combustione incompleta del carburante. Ciò non solo aumenta le emissioni, ma contribuisce anche a livelli più elevati di inquinanti come idrocarburi incombusti, monossido di carbonio e ossidi di azoto, che sono particolarmente problematici nei primi momenti dopo un avviamento a freddo. Inoltre, i ripetuti avviamenti a freddo possono accelerare l'usura dei componenti del motore, riducendo potenzialmente la durata complessiva del veicolo. Affrontare queste sfide dell'avviamento a freddo è essenziale per diversi motivi. Il miglioramento delle prestazioni di avviamento a freddo può migliorare significativamente l'efficienza del carburante dei veicoli ibridi, nonché la loro affidabilità e durata. Inoltre, riducendo le emissioni associate agli avviamenti a freddo, i veicoli ibridi possono realizzare meglio il loro potenziale come alternative ecologiche ai veicoli tradizionali. Una strategia promettente per mitigare le emissioni di NOx a basse temperature è l'implementazione di assorbitori di NOx passivi (PNA). I PNA sono progettati specificamente per catturare NOx durante le condizioni di avviamento a freddo quando i convertitori catalitici tradizionali sono meno efficaci. Assorbono NOx a basse temperature e poi li rilasciano a temperature più elevate, consentendo il trattamento degli NOx in sistemi a valle come unità di riduzione catalitica selettiva (SCR) o catalizzatori a tre vie (TWC). Tra i vari materiali valutati per applicazioni PNA, il Pd supportato da zeolite si distingue per le sue notevoli caratteristiche di accumulo e rilascio di NOx. Il Pd, quando disperso su una struttura di zeolite, mostra un'elevata affinità per le specie di NOx a basse temperature, il che è fondamentale per un efficace controllo delle emissioni all'avviamento a freddo. La struttura della zeolite non solo fornisce un'ampia superficie per la dispersione di Pd, ma stabilizza anche le specie di Pd, migliorando sia l'efficienza di adsorbimento che la stabilità termica del materiale. Inoltre, la forte interazione tra Pd e i siti acidi della zeolite promuove l'adsorbimento selettivo di NOx rispetto ad altri componenti di scarico, ottimizzando ulteriormente le prestazioni PNA. La ricerca ha dimostrato che questi materiali possono ottenere significative riduzioni delle emissioni di NOx durante la fase critica di avviamento a freddo, rendendoli un componente chiave per soddisfare rigorosi standard normativi. Inoltre, i progressi nei metodi di sintesi e preparazione, come le tecniche di scambio ionico, hanno ulteriormente migliorato la dispersione e l'accessibilità del Pd all'interno della struttura zeolitica, migliorando così l'efficienza complessiva dei PNA. L'integrazione dei Pd-PNA supportati da zeolite nei sistemi di scarico rappresenta un significativo passo avanti nello sviluppo di tecnologie di post-trattamento avanzate volte a ridurre emissioni veicolari in condizioni di guida reali. Ciò ha motivato questo lavoro di tesi in cui è stata condotta un'indagine utilizzando la spettroscopia FT-IR operando in combinazione con studi di microreattori per esplorare i dettagli meccanicistici dell'adsorbimento e del desorbimento di NOx a bassa temperatura e per valutare le prestazioni del catalizzatore a diverse temperature e sotto l'impatto delle diverse specie presenti nei gas di scarico come O2, H2O, CO, idrocarburi (ad esempio C3H6). In particolare, la spettroscopia FT-IR Operando svolge un ruolo cruciale nel fornire approfondimenti sui meccanismi e sui percorsi di reazione catalitica consentendo l'analisi in tempo reale sia della superficie del catalizzatore che della fase gassosa durante le reazioni catalitiche. Oltre a monitorare i fenomeni di superficie e le dinamiche della fase gassosa, la FT-IR Operando facilita il rilevamento degli intermedi di reazione. Infatti, grazie alle condizioni Operando, è possibile avere un'immagine in movimento della superficie durante l'operazione catalitica, che altrimenti non può essere osservata in condizioni di vuoto. Integrando l'analisi in fase gassosa con l'analisi simultanea della superficie spettroscopica FT-IR, questo approccio contribuisce a una comprensione completa dei meccanismi di reazione e del comportamento delle specie di superficie. Per questa tesi, è stata sintetizzata e caratterizzata una zeolite con una piccola dimensione dei pori, in particolare la chabasite, drogata con palladio (Pd), ed è stato valutato l'impatto dei gas di scarico sulle caratteristiche di intrappolamento e desorbimento degli NOx della zeolite promossa da Pd. Il catalizzatore, denominato "W-Pd/SSZ-13", è stato sintetizzato utilizzando il metodo di impregnazione a umido. Questa tecnica consente un buon controllo sulla distribuzione e sul caricamento dei siti metallici attivi, portando potenzialmente a una maggiore efficienza catalitica e stabilità in condizioni di reazione. La caratterizzazione del catalizzatore mediante adsorbimento in situ di CO/NO abbinato a spettroscopia FT-IR ha rivelato la presenza di specie isolate di Pd+ e Pd2+, prodotte tramite scambio ionico nei siti acidi di Brønsted all'interno della zeolite, insieme alla presenza di particelle di PdOx sulla superficie esterna della zeolite. Lo studio della reattività prevede un test standard condotto in condizioni che imitano gli ambienti di scarico del mondo reale, incorporando O2 e H2O. In seguito, la ricerca esamina sistematicamente l'effetto di ciascuno di questi componenti sulle prestazioni del catalizzatore a tre temperature di adsorbimento chiave: 80 °C, 120 °C e 150 °C. L'indagine cerca di fornire una comprensione completa di come la presenza di singoli componenti di scarico influenzi l'efficienza di stoccaggio di NOx, la stabilità termica e le prestazioni complessive del catalizzatore, che sono fattori cruciali nell'ottimizzazione dei PNA per applicazioni nel mondo reale. L'adsorbimento di NO in condizioni standard (ad es. in presenza di acqua e ossigeno) a tutte le temperature è accompagnato dall'evoluzione di NO2 dovuta alla riduzione di siti Pd2+ a Pd+; si osserva la formazione di nitrosili Pd. L'indagine di varie temperature di adsorbimento produce formazioni di nitrosili simili, con formazione aggiuntiva di nitrato a temperature inferiori. La stabilità termica delle specie adsorbite aumenta all'aumentare della temperatura di adsorbimento. La presenza di ossigeno non influisce in modo significativo sull'adsorbimento di NO e i nitrosili si formano come nella corsa con ossigeno. Tuttavia, la presenza di ossigeno riduce la stabilità dei nitrosili adsorbiti promuovendo la riossidazione dei nitrosili Pd+ a specie Pdn+ meno stabili al riscaldamento. Al contrario, H2O influisce fortemente sull'adsorbimento di NO poiché in sua assenza non si verifica alcuna riduzione di Pd2+ a Pd+ da parte di NO e quindi non si osserva alcuna formazione di NO2 durante lo stoccaggio. In questo caso si formano nitrosili di Pd2+, insieme agli ioni nitrosonio sui siti acidi della zeolite. Ciò aumenta la capacità di stoccaggio del catalizzatore; tuttavia, la stabilità termica delle specie adsorbite è molto scarsa e si decompongono a basse temperature. È stato scoperto che la presenza di CO e propilene riduce la capacità di stoccaggio di NOx del catalizzatore. È stato osservato che NO si adsorbe come nitrosili in presenza di CO e come complessi Pdn+(NO)(X) in presenza di propilene. Infine, le prestazioni di un catalizzatore a scambio ionico (IE) sono state confrontate con quelle del catalizzatore preparato mediante impregnazione a umido (W-Pd/SSZ-13). Il campione IE mostra un carico di Pd ridotto rispetto al campione impregnato (0,2% p/p contro 1% p/p). Normalizzando i risultati per i diversi carichi di Pd, sono stati ottenuti risultati molto simili in condizioni standard, ovvero NO riduce Pd2+ a Pd+ e si adsorbe sotto forma di nitrosili. Il catalizzatore a scambio ionico ha mostrato una capacità di adsorbimento di NO leggermente migliorata (normalizzata per il carico di Pd) ma una minore stabilità termica delle specie adsorbite. Un effetto molto simile delle condizioni operative (T, ossigeno e contenuto di acqua) è osservato su questo catalizzatore rispetto al campione impregnato, se si esclude la maggiore formazione di ioni nitrosonio in condizioni secche dovuta alle maggiori quantità di acido zeolitico siti non occupati dal Pd.
Pd/SSZ-13 Low-T NOx adsorbers: an Investigation by Operando FTIR Spectroscopy and microreactor study
Hamid, Yusra
2023/2024
Abstract
Air pollution from transportation accounts for a significant share of global pollutant emissions. Among these pollutants, nitrogen oxides (NOx), which are primarily emitted by internal combustion engines, present a serious threat to human health. NOx is particularly concerning due to its strong link to lung cancer and its role in the formation of tropospheric ozone, a harmful air pollutant. In response to these health risks, recent regulations have been implemented with the goal of reducing NOx emissions to nearly zero, reflecting the growing emphasis on minimizing the environmental and public health impacts of transportation. Additionally, advancements in emission control technologies are being developed to meet these stringent standards, highlighting the importance of ongoing innovation in this field. These regulations target not only new vehicle technologies but also the improvement of exhaust after-treatment systems to address the environmental and public health risks associated with NOx pollution. Currently, nitrogen oxides emissions are managed using Three-Way Catalysts (TWC) for gasoline engines and Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) technologies for diesel engines. These systems are effective but require a minimum operating temperature, typically above 200°C, to function efficiently. However, internal combustion engines, particularly diesel engines, frequently experience an extended period known as the cold start phase, during which the engine operates at temperatures below this threshold. During cold start, the exhaust temperature remains too low for these emission control technologies to be fully effective, leading to increased NOx emissions until the engine reaches the required operating temperature. This challenge underscores the need for advancements in catalyst technologies that can perform efficiently at lower temperatures to reduce NOx emissions during the cold start phase. Hybrid vehicles, which combine electric motors with internal combustion engines, also encounter significant challenges related to cold starts. The start/stop nature of hybrid operation, where the combustion engine frequently cycles on and off, intensifies these cold start issues. One of the primary concerns is that the engine often fails to reach its optimal operating temperature during these short cycles, which can lead to incomplete fuel combustion. This not only increases emissions but also contributes to higher levels of pollutants such as unburned hydrocarbons, carbon monoxide, and nitrogen oxides, which are particularly problematic during the initial moments after a cold start. Additionally, the repeated cold starts can accelerate wear and tear on engine components, potentially reducing the overall lifespan of the vehicle. Addressing these cold start challenges is essential for several reasons. Improving cold start performance can significantly enhance the fuel efficiency of hybrid vehicles, as well as their reliability and durability. Moreover, by reducing the emissions associated with cold starts, hybrid vehicles can better fulfill their potential as environmentally friendly alternatives to traditional vehicles. One promising strategy for mitigating NOx emissions at low temperatures is the implementation of Passive NOx Adsorbers (PNAs). PNAs are specifically engineered to capture NOx during cold start conditions when traditional catalytic converters are less effective. They adsorb NOx at low temperatures and then release it at higher temperatures, allowing the NOx to be treated in downstream systems such as selective catalytic reduction (SCR) units or three-way catalysts (TWC). Among various materials evaluated for PNA applications, zeolite-supported Pd stands out due to its remarkable NOx storage and release characteristics. Pd, when dispersed on a zeolite framework, exhibits high affinity for NOx species at low temperatures, which is crucial for effective cold start emission control. The zeolite structure not only provides a large surface area for Pd dispersion but also stabilizes the Pd species, enhancing both the adsorption efficiency and thermal stability of the material. Additionally, the strong interaction between Pd and the acidic sites of the zeolite promotes the selective adsorption of NOx over other exhaust components, further optimizing the PNA performance. Research has shown that these materials can achieve significant reductions in NOx emissions during the critical cold start phase, making them a key component in meeting stringent regulatory standards. Moreover, advancements in the synthesis and preparation methods, such as ion exchange techniques, have further improved the dispersion and accessibility of Pd within the zeolite framework, thereby enhancing the overall efficiency of the PNAs. The integration of zeolite-supported Pd-PNAs into exhaust systems represents a significant step forward in the development of advanced aftertreatment technologies aimed at reducing vehicular emissions under real-world driving conditions. This has motivated this thesis work where an investigation have been conducted using operando FT-IR spectroscopy in combination with microreactor studies to explore the mechanistic details of low-temperature NOx adsorption and desorption, and to assess the catalyst's performance at different temperatures and under the impact of the different species present in the exhaust gases like O2, H2O, CO, hydrocarbons (e.g. C3H6). In particular, Operando FT-IR spectroscopy plays a crucial role in providing insights into catalytic reaction mechanisms and pathways by enabling real-time analysis of both the catalyst surface and the gas phase during catalytic reactions. In addition to monitoring surface phenomena and gas-phase dynamics, Operando FT-IR facilitates the detection of reaction intermediates. In fact, owing to the Operando conditions, it is possible to have a motion picture of the surface during the catalytic operation, that otherwise cannot be observed under vacuum conditions. By integrating gas-phase analysis with simultaneous FT-IR spectroscopic surface analysis, this approach contributes to a comprehensive understanding of reaction mechanisms and the behavior of surface species. For this thesis, a zeolite with a small pore size, specifically chabazite, doped with palladium (Pd) has been synthesized and characterized, and the impact of the exhaust gases on the NOx trapping and desorption characteristics of the Pd promoted zeolite has been evaluated. The catalyst, referred to as "W-Pd/SSZ-13," was synthesized using the wet impregnation method. This technique allows for a good control over the distribution and loading of active metal sites, potentially leading to higher catalytic efficiency and stability under reaction conditions. Characterization of the catalyst using in-situ CO/NO adsorption coupled with FT-IR spectroscopy revealed the presence of isolated Pd+ and Pd2+ species, produced via ion exchange at the Brønsted acid sites within the zeolite, along with the presence of PdOx particles on the zeolite's external surface. Reactivity study involves a standard test conducted under conditions that mimic real-world exhaust environments, incorporating O2 and H2O. Following this, the research systematically examines the effect of each of these components on the catalyst’s performance at three key adsorption temperatures: 80°C, 120°C, and 150°C. The investigation seeks to provide a comprehensive understanding of how the presence of individual exhaust components influences NOx storage efficiency, thermal stability, and overall catalyst performance, which are crucial factors in optimizing PNAs for real-world applications. NO adsorption under standard conditions (i.e. in presence of water and oxygen) at all temperatures is accompanied by NO2 evolution due to the reduction of Pd2+ to Pd+ sites; formation of Pd nitrosyls is observed. The investigation of various adsorption temperatures yield similar nitrosyl formations, with additional nitrate formation at lower temperatures. The thermal stability of the adsorbed species increases upon increasing the adsorption temperature. The presence of oxygen does not significantly impact NO adsorption, and nitrosyls are formed like in the run with oxygen. However, the presence of oxygen reduces the stability of adsorbed nitrosyls by promoting the reoxidation of Pd+ nitrosyls to less stable Pdn+ species upon heating. At variance, H2O strongly impacts the NO adsorption since in its absence no reduction of Pd2+ to Pd+ by NO occurs and hence no formation of NO2 is observed during the storage. Nitrosyls of Pd2+ are formed in this case, along with nitrosonium ions over the acid sites of the zeolite. This increases the storage capacity of the catalyst; however, the thermal stability of the adsorbed species is very poor and they decompose at low temperatures. The presence of CO and propylene was found to reduce the NOx storage capacity of the catalyst. NO was observed to adsorb as nitrosyls in the presence of CO and as Pdn+(NO)(X) complexes in the presence of propylene. Lastly, the performances of a Ion-Exchange (IE) catalyst has been compared with those of the catalyst prepared by wet-impregnation (W-Pd/SSZ-13). The IE sample shows a reduced Pd loading with respect to the impregnated sample (0,2 % w/w vs 1 % w/w). Normalizing the results for the different Pd loading, very similar results have been obtained under standard conditions, i.e. NO reduces Pd2+ to Pd+ and adsorbs in the form of nitrosyls. The ion-exchange catalyst showed a slightly improved NO adsorption capacity (normalized for the Pd loading) but a lower thermal stability of the adsorbed species. Very similar effect of the operating conditions (T, oxygen and water content) is observed on this catalyst with respect to the impregnated sample, if one exclude the higher formation of nitrosonium ions under dry conditions due to the higher amounts of zeolite acid sites not occupied by Pd.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD_YUSRA.pdf
non accessibile
Dimensione
11.53 MB
Formato
Adobe PDF
|
11.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/228652